AQA

A-Level

Mathematics

MM2B Mechanics 2B
Final Mark scheme

```
6360
June 2017
```

Version/Stage: v1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Annotations

Annotation	Description
\wedge	Omission mark
A1	Accuracy mark awarded one
B1	Independent mark one
BOD	Benefit of the doubt
Cross	Incorrect point
FT	Follow through
H Wavy	Dynamic, Horizontal Wavy line that can be expanded
Highlight	Highlight
ISW	Ignore subsequent work
M1	Method mark awarded one
Not Relevant	Not Relevant
Text Box	On Page Comment
SC	Special case
SEEN	Indicates that the point has been noted, but no credit has been given.
Tick	Correct point
$?$	Unclear
FIW	From Incorrect Work

Q	Solution	Mark	Total	Comment
4 (a)	$\begin{aligned} & \text { Resolve vertically at } \mathrm{P} \\ & \mathrm{~T}_{\mathrm{BP}} \cos 20+\mathrm{T}_{\mathrm{AP}} \cos 40=6 \mathrm{~g} \\ & \mathrm{~T}_{\mathrm{AP}} \cos 40=6 \mathrm{~g}-28.19 \\ & \mathrm{~T}_{\mathrm{AP}}=39.957 . . \\ & =40.0 \mathrm{~N} \end{aligned}$	M1 A1 A1	3	M1 for 3 terms 2 correct A1 fully correct equation
(b)	Resolve horizontally at P $\begin{aligned} & \frac{m v^{2}}{r}=\mathrm{T}_{\mathrm{BP}} \sin 20+\mathrm{T}_{\mathrm{AP}} \sin 40 \\ & \frac{6 \times 64}{r}=30 \sin 20+39.958 \sin 40 \\ & \mathrm{r}=\frac{384}{35.945} \\ & =10.68 . . \\ & =10.7 \end{aligned}$	M1A1 A1ft A1	4	M1 for 3 terms 2 correct A1 fully correct equation
	Total		7	

Q	Solution	Mark	Total	Comment
6	$\text { At } A, \frac{1}{2} \mathrm{~m} v^{2}=\frac{1}{2} \mathrm{~m} U^{2}+\mathrm{mg} 4(1-\cos \theta)$ When particle leaves the surface, Resolving in direction $O A$ $\begin{aligned} & \frac{m v^{2}}{4}=\mathrm{mg} \cos \theta \\ & v^{2}=4 \mathrm{~g} \cos \theta \\ & \frac{1}{2} U^{2}+4 \mathrm{~g}(1-\cos \theta)=\frac{1}{2} \cdot 4 \mathrm{~g} \cos \theta \end{aligned}$ $\begin{aligned} U^{2} & =-8 \mathrm{~g}+12 \mathrm{~g} \cos \theta \\ & =12 \mathrm{~g} \cos 35-8 \mathrm{~g} \\ & =1.8298 \mathrm{~g} \end{aligned}$ $\begin{aligned} U & =4.2346 \\ & =4.23 \mathrm{~ms}^{-1} \end{aligned}$	M1A1 M1 m1A1 A1 A1	7	M1 for at least 3terms correct [seen] A1 for all correct Do not accept $\sin \theta$ M1 for substituting their v^{2} into their energy equation A1 for all correct
	Total		7	

Q	Solution	Mark	Total	Comment
8 (a)	Word done in stretching string is $\int T \mathrm{dx}$ $\begin{aligned} & =\int_{0}^{e} \frac{\lambda x}{l} d x \\ & =\left[\lambda \frac{x^{2}}{2 l}\right] \end{aligned}$	M1 A1		Correct integral could be in e
	$\begin{aligned} & =\frac{\lambda e^{2}}{2 l}-0 \\ & =\frac{\lambda e^{2}}{2 l} \end{aligned}$	A1	3	A1 not given unless limits and dx on line 2 and use of dx not de
(b)(i)	Using $\mathrm{T}=\frac{\lambda x}{l}=m g$ $10 g=\frac{250 x}{0.8}$	M1		
	$\begin{aligned} & =\frac{\overline{250}}{250} \\ & =0.3136 \end{aligned}$	A1	2	Accept 0.314 or 0.3136
(ii)	$\begin{aligned} & \text { EPE at } P=\frac{250 \times 0.6^{2}}{1.6} \\ & =56.25 \end{aligned}$	M1 A1	2	Accept 56.3
(iii)	Let particle be at Q when it is $x \mathrm{~m}$ above P EPE at $P=$ change in $\mathrm{PE}+\mathrm{KE}[$ at $Q]+\mathrm{EPE}[$ at $Q]$ $=m g x+\frac{1}{2} m v^{2}+\frac{250 \times(0.6-x)^{2}}{1.6}$	$\begin{gathered} \mathrm{B} 1 \mathrm{~B} 1 \\ \mathrm{~B} 1 \end{gathered}$		B1 for PE B1 for KE B1 for correct EPE
	$\begin{aligned} & 56.25=10 g x+5 v^{2}+156.25(0.6-x)^{2} \\ & 225=40 g x+20 v^{2}+625(0.6-x)^{2} \\ & 225=40 g x+20 v^{2}+225-750 x+ \\ & 625 x^{2} \\ & 20 v^{2}=358 x-625 x^{2} \end{aligned}$	M1 A1	5	M1 for correct equation Correct equation from correct working
(iv)	When particle comes to rest $\mathrm{v}=0$ in $20 v^{2}=358 x-625 x^{2}$	M1		
	$x=0.5728$	A1	2	Accept 0.573
	Total		14	

Q	Solution	Mark	Total	Comment
9				
(a)	Using triangle $O B D$; this is similar to triangle $A B C$; Thus $\sin \theta=\frac{a}{3 a} \rightarrow \sin \theta=\frac{1}{3}$ $\begin{aligned} & \cos \theta=\frac{2 \sqrt{2}}{3} \\ & =2 \times \frac{1}{3} \times \frac{2 \sqrt{2}}{3} \\ & =\frac{4 \sqrt{2}}{9} \end{aligned}$	M1 A1	2	

