4767 Statistics 2

Question 1

Ques	stion 1		1
(i)	EITHER:	M1 for method for S	
	$S_{xy} = \Sigma xy - \frac{1}{n}\Sigma x\Sigma y = 880.1 - \frac{1}{48} \times 781.3 \times 57.8$	M1 for method for S_{xy}	
	= -60.72	M1 for method for at least one of S_{xx} or S_{yy}	
	$S_{XX} = \Sigma x^2 - \frac{1}{n} (\Sigma x)^2 = 14055 - \frac{1}{48} \times 781.3^2 = 1337.7$	A1 for at least one of	
	$S_{yy} = \Sigma y^2 - \frac{1}{n} (\Sigma y)^2 = 106.3 - \frac{1}{48} \times 57.8^2 = 36.70$	S_{xy} , S_{xx} , S_{yy} . correct M1 for structure of <i>r</i>	
	$r = \frac{S_{xy}}{\sqrt{S_{xy}}} = \frac{-60.72}{\sqrt{1337.7 \times 36.70}} = -0.274$	A1 CAO (-0.27 to -0.28)	
	OR:	M1 for method for $cov(x,y)$	
	$\operatorname{cov}(x, y) = \frac{\sum xy}{n} - \frac{1}{xy} = 880.1/48 - 16.28 \times 1.204$ $= -1.265$	M1 for method for at least	
	$\operatorname{rmsd}(x) = \sqrt{\frac{S_{xx}}{n}} = \sqrt{(1337.7/48)} = \sqrt{27.87} = 5.279$	one msd A1 for at least one of cov/msd_correct	
	rmsd(y) = $\sqrt{\frac{S_{yy}}{n}} = \sqrt{(36.70/48)} = \sqrt{0.7646} = 0.8744$	M1 for structure of r A1 CAO (-0.27 to -0.28)	5
	$r = \frac{\text{cov}(x,y)}{\text{rmsd}(x)\text{rmsd}(y)} = \frac{-1.265}{5.279 \times 0.8744} = -0.274$	(
(ii)	H ₀ : $\rho = 0$ H ₁ : $\rho < 0$ (one-tailed test)	B1 for H_0 , H_1 in symbols	
	where $ ho$ is the population correlation coefficient	B1 for defining ρ	
	For $n = 48$, 5% critical value = 0.2403	B1FT for critical value	
	Since $ - 0.274 > 0.2403$ we can reject H ₀ :	M1 for sensible comparison leading to a	6
	There is sufficient evidence at the 5% level to suggest that there is negative correlation between education spending and population growth.	conclusion A1 for result (FT r<0) E1 FT for conclusion in words	
(iii)	Underlying distribution must be bivariate Normal. If the distribution is bivariate Normal then the scatter diagram will have an elliptical shape.	B1 CAO for bivariate Normal B1 indep for elliptical shape	2
(iv)	 Correlation does not imply causation There could be a third factor increased growth could cause lower spending 	E1 E1 E1	
	 increased growth could cause lower spending. Allow any sensible alternatives, including example of a possible third factor. 		3
(v)	Advantage – less effort or cost Disadvantage – the test is less sensitive (ie is less	E1	
	likely to detect any correlation which may exist)	E1	2 18
L	I		

Question 2

		1
(A) $P(X=2) = e^{-0.37} \frac{0.37^2}{2!} = 0.0473$	M1 A1 (2 s.f.)	
(B) $P(X > 2)$ = $1 - (e^{-0.37} \frac{0.37^2}{2!} + e^{-0.37} \frac{0.37^1}{1!} + e^{-0.37} \frac{0.37^0}{0!})$ = $1 - (0.0473 + 0.2556 + 0.6907) = 0.0064$	M1 for $P(X = 1)$ and P(X = 0) M1 for complete method A1 NB Answer given	5
P(At most one day more than 2) = $\binom{30}{1} \times 0.9936^{29} \times 0.0064 + 0.9936^{30} =$ = 0.1594 + 0.8248 = 0.9842	M1 for coefficient M1 for 0.9936 ²⁹ × 0.0064 M1 for 0.993630 A1 CAO (min 2sf)	4
$\lambda = 0.37 \times 10 = 3.7$ P(X > 8) = 1 - 0.9863 = 0.0137	B1 for mean (SOI) M1 for probability A1 CAO	3
Mean no. per 1000ml = 200 × 0.37 = 74 Using Normal approx. to the Poisson, $X \sim N(74, 74)$ $P(X > 90) = P\left(Z > \frac{90.5 - 74}{\sqrt{74}}\right)$ = $P(Z > 1.918) = 1 - \Phi(1.918)$ = $1 - 0.9724 = 0.0276$	 B1 for Normal approx. with correct parameters (SOI) B1 for continuity corr. M1 for probability using correct tail A1 CAO (min 2 s.f.), (but FT wrong or omitted CC) 	4
P(questionable) = 0.0064 × 0.0137 ×0.0276 = 2.42 × 10 ⁻⁶	M1 A1 CAO	2 18
	$= 1 - (e^{-0.37} \frac{0.37^2}{2!} + e^{-0.37} \frac{0.37^1}{1!} + e^{-0.37} \frac{0.37^0}{0!})$ $= 1 - (0.0473 + 0.2556 + 0.6907) = 0.0064$ P(At most one day more than 2) $= \begin{pmatrix} 30 \\ 1 \end{pmatrix} \times 0.9936^{29} \times 0.0064 + 0.9936^{30} =$ $= 0.1594 + 0.8248 = 0.9842$ $\lambda = 0.37 \times 10 = 3.7$ P(X > 8) = 1 - 0.9863 = 0.0137 Mean no. per 1000ml = 200 × 0.37 = 74 Using Normal approx. to the Poisson, X ~ N(74, 74) P(X > 90) = P(Z > \frac{90.5 - 74}{\sqrt{74}}) $= P(Z > 1.918) = 1 - \Phi(1.918)$ $= 1 - 0.9724 = 0.0276$ P(questionable) = 0.0064 × 0.0137 × 0.0276	(B) $P(X > 2)$ M1 for $P(X = 1)$ and $P(X = 0)$ $= 1 - (e^{-0.37} \frac{0.37^2}{2!} + e^{-0.37} \frac{0.37^1}{1!} + e^{-0.37} \frac{0.37^0}{0!})$ M1 for $P(X = 1)$ and $P(X = 0)$ $= 1 - (0.0473 + 0.2556 + 0.6907) = 0.0064$ M1 for complete method A1 NB Answer given P(At most one day more than 2)M1 for coefficient $= \begin{pmatrix} 30 \\ 1 \end{pmatrix} \times 0.9936^{29} \times 0.0064 + 0.9936^{30} =$ M1 for $0.9936^{30} \times 0.0064$ $= 0.1594 + 0.8248 = 0.9842$ M1 for $0.9936^{29} \times 0.0064$ $A = 0.37 \times 10 = 3.7$ B1 for mean (SOI) $P(X > 8) = 1 - 0.9863$ M1 for probability $= 0.0137$ M1 for correct parameters (SOI)Mean no. per 1000ml = $200 \times 0.37 = 74$ B1 for Normal approx.Using Normal approx. to the Poisson, $X \sim N(74, 74)$ B1 for continuity corr. $P(Z > 90) = P\left(Z > \frac{90.5 - 74}{\sqrt{74}}\right)$ B1 for continuity corr. $= 1 - 0.9724 = 0.0276$ M1 for probability using correct tail A1 CAO (min 2 s.f.), (but FT wrong or omitted CC)P(questionable) = $0.0064 \times 0.0137 \times 0.0276$ M1

Question 3

-			
(i)	$X \sim N(27500,4000^2)$ P(X>25000) = P $\left(Z > \frac{25000 - 27500}{4000}\right)$	M1 for standardising	
	= $P(Z > -0.625)$ = $\Phi(0.625) = 0.7340$ (3 s.f.)	A1 for -0.625 M1 <i>dep</i> for correct tail A1CAO (must include use of differences)	4
(ii)	P(7 of 10 last more than 25000) = $\binom{10}{7} \times 0.7340^7 \times 0.2660^3 = 0.2592$	M1 for coefficient M1 for $0.7340^7 \times 0.2660^3$ A1 FT (min 2sf)	3
(iii)	From tables $\Phi^{-1}(0.99) = 2.326$ $\frac{k - 27500}{4000} = -2.326$ $x = 27500 - 2.326 \times 4000 = 18200$	B1 for 2.326 seen M1 for equation in <i>k</i> and negative z-value A1 CAO for awrt 18200	3
(iv)	H ₀ : μ = 27500; H ₁ : μ > 27500 Where μ denotes the mean lifetime of the new tyres.	B1 for use of 27500 B1 for both correct B1 for definition of μ	3
(v)	Test statistic = $\frac{28630 - 27500}{4000/\sqrt{15}} = \frac{1130}{1032.8}$ = 1.094 5% level 1 tailed critical value of <i>z</i> = 1.645 1.094 < 1.645 so not significant. There is not sufficient evidence to reject H ₀ There is insufficient evidence to conclude that the new tyres last longer.	 M1 must include √ 15 A1 FT B1 for 1.645 M1 <i>dep</i> for a sensible comparison leading to a conclusion A1 for conclusion in words in context 	5
			18

Ques	stion 4		
(i)	H_0 : no association between location and species. H_1 : some association between location and species.	B1 for both	1
(ii)	Expected frequency = $38/160 \times 42 = 9.975$ Contribution = $(3 - 9.975)^2 / 9.975$ = 4.8773	M1 A1 M1 for valid attempt at (O-E) ² /E A1 NB Answer given	4
(iii)	Refer to χ_4^2 Critical value at 5% level = 9.488 Test statistic X^2 = 32.85	B1 for 4 deg of f(seen) B1 CAO for cv M1 Sensible comparison,	
	Result is significant	using 32.85, leading to a conclusion A1 for correct conclusion (FT their c.v.)	5
	There appears to be some association between location and species	E1 conclusion in context	
	NB if $H_0 H_1$ reversed, or 'correlation' mentioned, do not award first B1or final E1		
(iv)	 Limpets appear to be distributed as expected throughout all locations. Mussels are much more frequent in exposed locations and much less in pools than expected. Other shellfish are less frequent in exposed locations and more frequent in pools than expected. 	E1 E1, E1 E1, E1	5
(v)	$\frac{24}{53} \times \frac{32}{65} \times \frac{16}{42} = 0.0849$	M1 for one fraction M1 for product of all 3 A1 CAO	3
			18