## 4767 Statistics 2

## Question 1

| (i) | EITHER: $\begin{aligned} \mathrm{S}_{x y} & =\Sigma x y-\frac{1}{n} \Sigma x \Sigma y=880.1-\frac{1}{48} \times 781.3 \times 57.8 \\ & =-60.72 \end{aligned} \begin{aligned} \mathrm{S}_{x x} & =\Sigma x^{2}-\frac{1}{n}(\Sigma x)^{2}=14055-\frac{1}{48} \times 781.3^{2}=1337.7 \\ \mathrm{~S}_{y y} & =\Sigma y^{2}-\frac{1}{n}(\Sigma y)^{2}=106.3-\frac{1}{48} \times 57.8^{2}=36.70 \\ r & =\frac{\mathrm{S}_{x y}}{\sqrt{\mathrm{~S}_{x x} \mathrm{~S}_{y y}}}=\frac{-60.72}{\sqrt{1337.7 \times 36.70}}=-0.274 \end{aligned}$ <br> OR: $\left.\begin{array}{l} \operatorname{cov}(x, y)=\frac{\sum x y}{n}-\overline{x y}=880.1 / 48-16.28 \times 1.204 \\ =-1.265 \end{array} \quad \begin{array}{r} \operatorname{rmsd}(x)=\sqrt{\frac{S_{x x}}{n}}=\sqrt{ }(1337.7 / 48)=\sqrt{ } 27.87=5.279 \end{array} \quad \begin{array}{r} \operatorname{rmsd}(y)=\sqrt{\frac{S_{y y}}{n}}=\sqrt{ }(36.70 / 48)=\sqrt{ } 0.7646=0.8744 \end{array} \quad \begin{array}{r} \operatorname{cov}(\mathrm{x}, \mathrm{y}) \\ r m s d(x) \operatorname{rmsd}(y) \end{array}=\frac{-1.265}{5.279 \times 0.8744}=-0.274\right]$ | M1 for method for $\mathrm{S}_{x y}$ <br> M1 for method for at least one of $S_{x x}$ or $S_{y y}$ <br> A1 for at least one of $\mathrm{S}_{x y}, \mathrm{~S}_{x x}, \mathrm{~S}_{y y}$. correct <br> M1 for structure of $r$ A1 CAO <br> ( -0.27 to -0.28 ) <br> M1 for method for $\operatorname{cov}(x, y)$ <br> M1 for method for at least one msd <br> A1 for at least one of cov/msd correct M1 for structure of $r$ A1 CAO ( -0.27 to -0.28 ) | 5 |
| :---: | :---: | :---: | :---: |
| (ii) | $\mathrm{H}_{0}: \rho=0$ <br> $\mathrm{H}_{1}: \rho<0$ (one-tailed test) <br> where $\rho$ is the population correlation coefficient <br> For $n=48,5 \%$ critical value $=0.2403$ <br> Since $\|-0.274\|>0.2403$ we can reject $\mathrm{H}_{0}$ : <br> There is sufficient evidence at the $5 \%$ level to suggest that there is negative correlation between education spending and population growth. | B1 for $\mathrm{H}_{0}, \mathrm{H}_{1}$ in symbols <br> B1 for defining $\rho$ <br> B1FT for critical value <br> M1 for sensible comparison leading to a conclusion <br> A1 for result ( $\mathrm{FT} r<0$ ) <br> E1 FT for conclusion in words | 6 |
| (iii) | Underlying distribution must be bivariate Normal. If the distribution is bivariate Normal then the scatter diagram will have an elliptical shape. | B1 CAO for bivariate Normal B1 indep for elliptical shape | 2 |
| (iv) | - Correlation does not imply causation <br> - There could be a third factor <br> - increased growth could cause lower spending. <br> Allow any sensible alternatives, including example of a possible third factor. | $\begin{aligned} & \hline \text { E1 } \\ & \text { E1 } \\ & \text { E1 } \end{aligned}$ | 3 |
| (v) | Advantage - less effort or cost Disadvantage - the test is less sensitive (ie is less likely to detect any correlation which may exist) | $\begin{aligned} & \hline \text { E1 } \\ & \text { E1 } \\ & \hline \end{aligned}$ | 2 |
|  |  |  | 18 |

## Question 2

| (i) | (A) $P(X=2)=e^{-0.37} \frac{0.37^{2}}{2!}=0.0473$ $\begin{aligned} & \text { (B) } \mathrm{P}(X>2) \\ & =1-\left(\mathrm{e}^{-0.37} \frac{0.37^{2}}{2!}+\mathrm{e}^{-0.37} \frac{0.37^{1}}{1!}+\mathrm{e}^{-0.37} \frac{0.37^{0}}{0!}\right) \\ & =1-(0.0473+0.2556+0.6907)=0.0064 \end{aligned}$ | M1 <br> A1 (2 s.f.) <br> M 1 for $\mathrm{P}(X=1)$ and $\mathrm{P}(X=0)$ <br> M1 for complete method <br> A1 NB Answer given | 5 |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \text { P(At most one day more than } 2) \\ & =\binom{30}{1} \times 0.9936^{29} \times 0.0064+0.9936^{30}= \\ & =0.1594+0.8248=0.9842 \end{aligned}$ | M1 for coefficient <br> M1 for $0.9936^{29} \times 0.0064$ <br> M1 for 0.993630 <br> A1 CAO (min 2sf) | 4 |
| (iii) | $\begin{aligned} & \lambda=0.37 \times 10=3.7 \\ & P(x>8)=1-0.9863 \\ & =0.0137 \end{aligned}$ | B1 for mean (SOI) M1 for probability A1 CAO | 3 |
| (iv) | Mean no. per $1000 \mathrm{ml}=200 \times 0.37=74$ <br> Using Normal approx. to the Poisson, $\begin{aligned} & X \sim \mathrm{~N}(74,74) \\ & \quad \mathrm{P}(X>90)=\mathrm{P}\left(Z>\frac{90.5-74}{\sqrt{74}}\right) \\ & =\mathrm{P}(Z>1.918)=1-\Phi(1.918) \\ & =1-0.9724=0.0276 \end{aligned}$ | B1 for Normal approx. with correct parameters (SOI) <br> B1 for continuity corr. <br> M1 for probability using correct tail <br> A1 CAO (min 2 s.f.), (but FT wrong or omitted CC) | 4 |
| (v) | $\begin{aligned} & \mathrm{P}(\text { questionable })=0.0064 \times 0.0137 \times 0.0276 \\ & =2.42 \times 10^{-6} \end{aligned}$ | M1 <br> A1 CAO | 2 |
|  |  |  | 18 |

Question 3

| (i) | $\begin{aligned} & X \sim \mathrm{~N}\left(27500,4000^{2}\right) \\ & \mathrm{P}(X>25000)=\mathrm{P}\left(Z>\frac{25000-27500}{4000}\right) \\ &=\mathrm{P}(Z>-0.625) \\ &=\Phi(0.625)=0.7340(3 \text { s.f. }) \end{aligned}$ | M1 for standardising <br> A1 for -0.625 <br> M1 dep for correct tail A1CAO (must include use of differences) | 4 |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \mathrm{P}(7 \text { of } 10 \text { last more than } 25000) \\ & =\binom{10}{7} \times 0.7340^{7} \times 0.2660^{3}=0.2592 \end{aligned}$ | M1 for coefficient <br> M1 for $0.7340^{7} \times 0.2660^{3}$ <br> A1 FT (min 2sf) | 3 |
| (iii) | From tables $\Phi^{-1}(0.99)=2.326$ $\begin{aligned} & \frac{k-27500}{4000}=-2.326 \\ & x=27500-2.326 \times 4000=18200 \end{aligned}$ | B1 for 2.326 seen M1 for equation in $k$ and negative $z$-value <br> A1 CAO for awrt 18200 | 3 |
| (iv) | $\mathrm{H}_{0}: \mu=27500 ; \quad \mathrm{H}_{1}: \mu>27500$ <br> Where $\mu$ denotes the mean lifetime of the new tyres. | B1 for use of 27500 B1 for both correct B1 for definition of $\mu$ | 3 |
| (v) | $\begin{aligned} \text { Test statistic } & =\frac{28630-27500}{4000 / \sqrt{15}}=\frac{1130}{1032.8} \\ & =1.094 \end{aligned}$ <br> $5 \%$ level 1 tailed critical value of $z=1.645$ <br> 1.094 < 1.645 so not significant. <br> There is not sufficient evidence to reject $\mathrm{H}_{0}$ <br> There is insufficient evidence to conclude that the new tyres last longer. | M1 must include $\sqrt{ } 15$ <br> A1 FT <br> B1 for 1.645 <br> M1 dep for a sensible comparison leading to a conclusion <br> A1 for conclusion in words in context | 5 |
|  |  |  | 18 |

Question 4

| (i) | $\mathrm{H}_{0}$ : no association between location and species. $\mathrm{H}_{1}$ : some association between location and species. | B1 for both | 1 |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \text { Expected frequency }=38 / 160 \times 42=9.975 \\ & \begin{aligned} \text { Contribution } & =(3-9.975)^{2} / 9.975 \\ & =4.8773 \end{aligned} \end{aligned}$ | M1 A1 <br> M1 for valid attempt at (O-E) ${ }^{2} / \mathrm{E}$ <br> A1 NB Answer given | 4 |
| (iii) | Refer to $\chi_{4}^{2}$ <br> Critical value at $5 \%$ level $=9.488$ <br> Test statistic $X^{2}=32.85$ <br> Result is significant <br> There appears to be some association between location and species <br> NB if $\mathrm{H}_{0} \mathrm{H}_{1}$ reversed, or 'correlation' mentioned, do not award first B1or final E1 | B1 for 4 deg of $f($ seen $)$ <br> B1 CAO for cv <br> M1 Sensible comparison, using 32.85 , leading to a conclusion <br> A1 for correct conclusion (FT their c.v.) <br> E1 conclusion in context | 5 |
| (iv) | - Limpets appear to be distributed as expected throughout all locations. <br> - Mussels are much more frequent in exposed locations and much less in pools than expected. <br> - Other shellfish are less frequent in exposed locations and more frequent in pools than expected. | E1 <br> E1, E1 <br> E1, E1 | 5 |
| (v) | $\frac{24}{53} \times \frac{32}{65} \times \frac{16}{42}=0.0849$ | M1 for one fraction M1 for product of all 3 A1 CAO | 3 |
|  |  |  | 18 |

