Oxford Cambridge and RSA Examinations

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

MECHANICS 1, M1

Specimen Paper

Additional materials: Answer booklet
Graph paper
MEI Examination Formulae and Tables (MF 2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You may use a graphical or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is 72.
- Unless otherwise specified, the value of g should be taken to be exactly $9.8 \mathrm{~ms}^{-2}$.

Section A (36 marks)

1

Fig. 1

As shown in Fig.1, an object of mass $m \mathrm{~kg}$ at B is held in equilibrium by two light strings AB and BC.
String $A B$ is horizontal and fixed at A, string $B C$ is at 60° to the horizontal and is fixed at C. The tension in string BC is 10 N .
(i) (A) Draw a diagram showing all the forces acting on the object at B.
(B) Calculate the tension in the string section AB .
(ii) Calculate the value of m.

2 In this question the unit of length is the metre and the time is in seconds.
An object has initial position $\binom{2}{-1}$ and initial velocity $\binom{-1}{4}$.
It has a constant acceleration of $\binom{2}{5}$.
(i) Calculate the initial speed of the object.
(ii) Calculate the object's velocity and position after four seconds.

A model truck of mass 5 kg is being pulled by a light string along a straight path.

The resistance to its motion is 8 N .

In one situation, the string and the path are horizontal, as shown in Fig.3.1.

Fig.3.1
(i) Given that the acceleration of the truck is $4 \mathrm{~ms}^{-2}$, calculate the tension in the string.

$$
\rightarrow \text { direction of motion }
$$

In another situation, the path is horizontal and the string is inclined at 30° to the horizontal, as shown in Fig.3.2.

Fig. 3.2
(ii) Given that the tension in the string is 40 N , calculate the acceleration of the truck.

Fig. 4
A light inextensible string AB passes over a smooth peg.
Particles of mass 8 kg and 6 kg are attached to the ends A and B of the string and hang vertically, as shown in Fig. 4.
The system is released from rest.
(i) Draw separate diagrams showing the forces acting on the particles at A and at B .
(ii) (A) Write down the equation of motion for the particle at A and the equation of motion for the particle at B.
(B) Show that the acceleration of the system is $1.4 \mathrm{~ms}^{-2}$.

5 A particle has a velocity, $\mathbf{v} \mathrm{ms}^{-1}$, given by $\mathbf{v}=\left(t^{2}-t\right) \mathbf{i}+(t-1) \mathbf{j}$ where \mathbf{i} and \mathbf{j} are the standard unit vectors due east and north respectively, t is the time in seconds and the unit of length is the metre.
(i) Find the acceleration when $t=2$.
(ii) Determine the time(s), if any, when the particle is:
(A) at rest,
(B) moving due south.

Fig. 6
A rough plane is at 40° to the horizontal. A force of $T \mathrm{~N}$ at 25° to the greatest slope of the plane acts on a block of mass 20 kg on a plane, as shown in Fig. 6.
(i) Draw a diagram showing all the forces acting on the block.
(ii) Given that the block is in equilibrium, calculate the frictional force between the block and the plane when $T=172$.
(iii) For what values of T will the frictional force on the block act up the plane?

Section B (36 marks)

7 A car starts from rest and travels along a straight road.
Its speed, $v \mathrm{~ms}^{-1}$, at time t seconds is modelled by

$$
\begin{array}{ll}
v=4 t-0.2 t^{2} & 0 \leq t \leq 10 \\
v=\text { constant } & 10 \leq t \leq 15, \\
v=8+0.8 t & t \geq 15
\end{array}
$$

(i) Calculate the speed of the car at $t=0, t=10, t=15$ and $t=20$.
(ii) Find the values of the acceleration at:
(A) $t=7$,
(B) $t=12$,
(C) $t=16$.
(iii) Calculate the distance the car travels in the interval $10 \leq t \leq 20$.
(iv) Calculate the distance the car travels in the interval $0 \leq t \leq 10$.

8 In this question, air resistance should be neglected.

Fig. 7
Fig. 7 shows a small stone being projected horizontally at a speed of $14 \mathrm{~ms}^{-1}$ from the point L at the top of a vertical cliff.
The cliff is 78.4 m above horizontal ground.
Coordinate axes are drawn through the origin O on the horizontal ground vertically below the point of projection.
(i) (A) Show that, t seconds after projection, the height, $y \mathrm{~m}$, of the stone is given by $y=78.4-4.9 t^{2}$.
(B) Write down an expression in terms of t for the horizontal distance, $x \mathrm{~m}$, of the stone from O .
(ii) (A) Calculate the time it takes the stone to hit the ground.
(B) Calculate also the horizontal distance travelled by the stone.
(iii) Show that the equation of the trajectory of the stone is $40 y=3136-x^{2}$.

On another occasion the stone is projected from L as before.
At the same time, a second small stone is projected vertically upwards at speed $u \mathrm{~ms}^{-1}$ from a point M on the horizontal ground 35 m from O . The stones collide.
(iv) Show that the collision takes place just less than 48 m above the ground, 2.5 seconds after projection.
(v) Calculate the value of u.

