(a) (i) PCLM \rightarrow +ve $2 \times 4 - 6 \times 2 = 8v$ $v = -0.5 \text{ so } 0.5 \text{ m s}^{-1} \text{ in opp}$ direction to initial motion of P (B) (B) $0.5 \times 2 \times 4^2 + 0.5 \times 6 \times 2^2 - 0.5 \times$ = 27 J (ii) (A) PCLM \rightarrow +ve $2 \times 4 - 6 \times 2 = 2v_p + 6v_q$ $v_p + 3v_q = -2$ NEL \rightarrow +ve $\frac{v_q - v_p}{-2 - 4} = -\frac{2}{3}$ $v_q - v_p = 4$ $v_q = 0.5 \text{ so } 0.5 \text{ m s}^{-1} \text{ in orig}$ $v_p = -3.5 \text{ so } 3.5 \text{ m s}^{-1} \text{ in opp}$ (B) \rightarrow +ve $2 \times -3.5 - 2 \times 4 = -15 \text{ N s}$ so 15 N s in opp to orig dire (b) Let $\alpha = \arcsin(12/13)$ and $\beta = \alpha$ Parallel: $26 \cos \alpha = u \cos \beta$	M1 A1		
(i) PCLM \rightarrow +ve $2 \times 4 - 6 \times 2 = 8v$ $v = -0.5 \text{ so } 0.5 \text{ m s}^{-1} \text{ in opp}$ direction to initial motion of P (B) $0.5 \times 2 \times 4^2 + 0.5 \times 6 \times 2^2 - 0.5 \times$ = 27 J (ii) (A) PCLM \rightarrow +ve $2 \times 4 - 6 \times 2 = 2v_p + 6v_Q$ $v_p + 3v_Q = -2$ NEL \rightarrow +ve $\frac{v_Q - v_P}{-2 - 4} = -\frac{2}{3}$ $v_Q - v_P = 4$ $v_Q = 0.5 \text{ so } 0.5 \text{ m s}^{-1} \text{ in orig}$ $v_P = -3.5 \text{ so } 3.5 \text{ m s}^{-1} \text{ in opp}$ (B) \rightarrow +ve $2 \times -3.5 - 2 \times 4 = -15 \text{ N s}$ so 15 N s in opp to orig dire (b) Let $\alpha = \arcsin(12/13)$ and $\beta = \alpha$ Parallel: $26 \cos \alpha = u \cos \beta$			
(ii) (A) PCLM \rightarrow +ve $2 \times 4 - 6 \times 2 = 2v_p + 6v_q$ $v_p + 3v_q = -2$ NEL \rightarrow +ve $\frac{v_q - v_p}{-2 - 4} = -\frac{2}{3}$ $v_q - v_p = 4$ $v_q = 0.5 \text{ so } 0.5 \text{ m s}^{-1} \text{ in orig}$ $v_p = -3.5 \text{ so } 3.5 \text{ m s}^{-1} \text{ in orig}$ (B) \rightarrow +ve $2 \times -3.5 - 2 \times 4 = -15 \text{ N s}$ so 15 N s in opp to orig dire (b) Let $\alpha = \arcsin(12/13)$ and $\beta = \alpha$ Parallel: $26 \cos \alpha = u \cos \beta$		A1 Any form	3
(A) PCLM \rightarrow +ve $2 \times 4 - 6 \times 2 = 2v_p + 6v_Q$ $v_p + 3v_Q = -2$ NEL \rightarrow +ve $\frac{v_Q - v_p}{-2 - 4} = -\frac{2}{3}$ $v_Q - v_p = 4$ $v_Q = 0.5 \text{ so } 0.5 \text{ m s}^{-1} \text{ in orig}$ $v_p = -3.5 \text{ so } 3.5 \text{ m s}^{-1} \text{ in opp}$ P (B) \rightarrow +ve $2 \times -3.5 - 2 \times 4 = -15 \text{ N s}$ so 15 N s in opp to orig dire (b) Let $\alpha = \arcsin(12/13)$ and $\beta = \alpha$ Parallel: $26 \cos \alpha = u \cos \beta$	$\times 8 \times (-0.5)^2$ M1 A1	Must have correct masses	2
(b) Let $\alpha = \arcsin(12/13)$ and $\beta = \alpha$ Parallel: $26 \cos \alpha = u \cos \beta$		A1 Any form M1 NEL A1 Any form s ⁻¹ in orig direction of P A1 cao. Direction need not be made clear.	6
Let $\alpha = \arcsin(12/13)$ and $\beta = \alpha$ Parallel: $26 \cos \alpha = u \cos \beta$	ection M1		2
so $26 \times \frac{5}{13} = u \times \frac{4}{5}$ and $u = 12$ Perp: $e = \frac{u \sin \beta}{26 \sin \alpha}$ $= \frac{12.5 \times \frac{3}{5}}{26 \times \frac{12}{13}} = \frac{5}{16}$	M1 A1	$= u \cos \beta$ $M1$ $PCLM parallel to plane attempted. At least one resolution correct$ $A1$ $A1$ $M1$ $NEL on normal components attempted.$ $F1$ $FT their u$	6
			6 19

$\begin{array}{c} CW \\ 2 \times 9 \\ R_{\mathrm{B}} = \\ \\ CW \\ T = \\ \\ CW \\ T = \\ \\ CW \\ T = \\ \\ T$		mark		Sub
2×9 $R_{\rm B} =$ $CW r =$ $75 \times$ $T =$ (ii) $CW r =$ (iii) $CW r =$ (iv) $R =$ $CW r =$ $CW r =$ $CW r =$	agrams	B1	Internal force at B must be shown	
$75 \times$ $T =$ (ii) $Cw r \\ 90 \times$ givir (iii) $Diag$ (iv) $ac n \\ 75 \times$ $\frac{300}{7}$ Solv $U =$ $V =$	v moments about A $\times 90 - 3R_{\rm B} = 0$ $_{\rm B} = 60$ so 60 N upwards	M1 A1	1 st moments equation attempted for either force. Accept direction not specified	
90× givir (iii) Diag (iv) ac n 75× $\frac{300}{7}$ Solv U = V =	w moments about R: $T \downarrow$ $5 \times 1 + 3T - 60 \times 0.5 = 0$ = -15 so 15 N upwards	M1 A1 A1	2 nd moments equation for other force. All forces present. No extra forces. Allow only sign errors Direction must be clear (accept diag)	
(iv) $\operatorname{ac n}_{75\times}$ $\frac{300}{7}$ Solv U = V =	v moments about A $0 \times 2\cos 30 - V \times 3\cos 30 - U \times 3\cos 60 = 0$ ving $60\sqrt{3} = U + V\sqrt{3}$	M1 A1 E1	Moments equation with resolution. Accept terms missing All correct. Allow only sign errors. Clearly shown	6
$\frac{300}{7}$ Solv $U =$ $V =$	agram	B1	U and V correct with labels and arrows	3
U = V =	c moments about C $5 \times 2\cos 30 + 3.5V \cos 30 - 3.5U \cos 60 = 0$ $\frac{00}{7}\sqrt{3} = U - V\sqrt{3}$	M1 B1 A1	Moments equation with resolution. Accept term missing At least two terms correct (condone wrong signs) Accept any form	
	blving for U and V $= \frac{360\sqrt{3}}{7} (= 89.0768)$ $= \frac{60}{7} (= 8.571428)$ esolve \rightarrow on BC $= U$ o frictional force is $\frac{360\sqrt{3}}{7}$ N = 89.1 N (3 s. f.))	M1 A1 F1 M1 F1	Any method to eliminate one variable Accept any form and any reasonable accuracy Accept any form and any reasonable accuracy [Either of <i>U</i> and <i>V</i> is cao. FT the other]	8

Q 3		mark		Sub
(a)	$20000 = (R + 900g \times 0.1) \times 16$	M1 B1 A1	Use of $P = Fv$, may be implied. Correct weight term All correct	
	<i>R</i> = 368 so 368 N	A1 A1		4
(b) (i)	$F_{\rm max} = \mu mg \cos \alpha$	B1	Correct expression for F_{max} or wt cpt down slope (may be implied and in any form)	
	Force down slope is weight cpt $mg \sin \alpha$ Require $\mu mg \cos \alpha \ge mg \sin \alpha$	B1	Identifying $\sin \alpha$ as $\frac{5}{13}$ or equivalent	
	So $\mu \ge \tan \alpha = \frac{5}{12}$	E1	Proper use of $F \leq \mu R$ or equivalent.	
			[$\mu = \tan \alpha$ used WW; SC1]	3
(ii)	either $0.5 \times 11 \times v^2$	M1	Use of work energy with at least three required terms attempted	
	$= 11g \times 1.5 \times \frac{5}{13} + 0.2 \times 11g \times 1.5 \times \frac{12}{13} + 9$	B1	Any term RHS. Condone sign error.	
		B1 A1	Another term RHS. Condone sign error. All correct . Allow if trig consistent but wrong	
	$v^2 = 18.3717$ v = 4.2862 so 4.29 m s ⁻¹ (3 s. f.) or + ve up the slope	A1	сао	5
	$-11g \times \frac{5}{13} - 0.2 \times 11g \times \frac{12}{13} - 6 = 11a$	M1	Use of N2L	
	15 15	B1	Any correct term on LHS	
	$a = -6.1239 \text{ m s}^{-2}$ $v^2 = -3a$	A1 M1	use of appropriate <i>uvast</i>	
	$v = 4.286 \text{ m s}^{-1}$	A1	c.a.o.	
(iii)	continued overleaf			
•				•

4762

3	continued			
(iii)	either Extra GPE balances WD against resistances $mgx \sin \alpha$ = 6(x+3)+0.2×11g×cos α (x+3) x = 4.99386 so 4.99 m (3 s. f.) or 0.5×11×18.3717 = (1.5+x)×11g× $\frac{5}{13}$ -6(1.5+x) -(1.5+x)×0.2×11g× $\frac{12}{13}$ x = 4.99386 so 4.99 m (3 s. f.) or + ve down the slope $11g \times \frac{5}{13}$ -0.2×11g× $\frac{12}{13}$ -6=11a $a = 1.4145m s^{-2}$ 4.286 ² = 2a(1.5+x)	M1 B1 B1 A1 A1 B1 B1 B1 A1 A1 A1 A1 A1 A1 A1 M1	Or equivalent One of 1^{st} three terms on RHS correct Another of 1^{st} 3 terms on RHS correct All correct. FT their <i>v</i> if used. cao. Allow 1 term missing KE. FT their <i>v</i> Use of $1.5 + x$ (may be below) WD against friction All correct cao. N2L with all terms present all correct except condone sign errors use of appropriate <i>uvast</i>	6
	x = 4.99	B1 A1	for $(1.5 + x)$ (may be implied) c.a.o.	
				18

Q 4		mark		Sub
(i)	$100\left(\frac{\bar{x}}{\bar{y}}\right) = 10\left(\frac{5}{0}\right) + 30\left(\frac{10}{15}\right) + 30\left(\frac{20}{15}\right) + 30\left(\frac{25}{30}\right)$	M1 B1 B1	Correct method for c.m. Total mass correct One c.m. on RHS correct [If separate components considered, B1 for 2 correct]	
	$100\left(\frac{\overline{x}}{\overline{y}}\right) = \begin{pmatrix} 1700\\1800 \end{pmatrix}$ $\overline{x} = 17\\\overline{y} = 18$	A1 A1	cao cao. [Allow SC 4/5 for $\overline{x} = 18$ and $\overline{y} = 17$]	5
(ii)	(17,18,20)	B1 B1	<i>x</i> - and <i>y</i> - coordinates. FT from (i). <i>z</i> coordinate	2
(iii)	cw moments about horizontal edge thro' D x component $P \times 20 - 60 \times (20 - 17) = 0$ P = 9	M1 B1 B1 A1	Or equivalent with all forces present One moment correct (accept use of mass or length) correct use of their \overline{x} in a distance FT only their \overline{x}	4
(iv)	Diagram	B1	Normal reaction must be indicated acting vertically upwards at edge on Oz and weight be in approximately the correct place.	1
(v)	On point of toppling ac moments about edge along Oz $30 \times Q - 60 \times 17 = 0$ Q = 34 Resolving horizontally $F = Q$ As 34 > 30, slips first	M1 B1 F1 B1 B1	Or equivalent with all forces present Any moment correct (accept use of mass or length) FT only their \overline{x} FT their Q correctly argued.	5