Question	Scheme	Marks	AOs
1(i)	$602 = 3 \times 161 + 119$	M1	1.1b
	$161 = 119 + 42, \ 119 = 2 \times 42 + 35$	M1	1.1b
	42 = 35 + 7k, $35 = 5 = 7$, hcf 7	Al	1.1b
		(3)	
(ii)	Number of codes under old system = $5 \times 4 \times 4 \times 3 \times 2$ (= 480)	B1	3.1b
	Number of codes under new system = $4 \times 3 \times 7 \times 6 \times 5$ (= 2520)	B1	3.1b
	Subtracts first answer from second	M1	1.1b
	Increase in number of codes is 2040	A1	1.1b
		(4)	
		(7 n	narks)
Notes:			
 (i) M1: Attempts Euclid's algorithm – (there may be an arithmetic slip finding 119) M1: Uses Euclid's algorithm a further two times with 161 and "their 119" and then with "their 119" and "their 42" 			

Correctly interprets the problem and uses the five odd digits and four even digits to form a

Interprets the new situation using the four even digits, then the seven digits which have

Paper 4A: Further Pure Mathematics 2 Mark Scheme

This should be accurate with all the steps shown

not been used, to form a correct product

Subtracts one answer from the other

A1:

(ii)

B1:

B1:

M1:

A1:

correct product

Correct answer

Questio	Scheme	Marks	AOs	
2(a)	Let $z = x + i$	M1	2.1	
	$w = (x+i)^2 = (x^2-1)+2xi$	A1	1.1b	
	Let $w = u + iv$, then $u = (x^2 - 1)$ and $v = 2x$	M1	2.1	
	$\Rightarrow v^2 = 4(u+1)$, which therefore represents a parabola	A1ft	2.2a	
		(4)		
(b)	Im M1: Sketches a parabola with symmetry about	M1	1.1b	
	-10 Re Re the real axis A1: Accurate sketch	A1	1.1b	
		(2)		
		(6 n	narks)	
Notes: (a) M1: Translates the information that $Im(z) = 1$ into a cartesian form; e.g. $z = x + i$ A1: Obtains a correct expression for w M1: Separates the real and imaginary parts and equates to u and v respectively A1ft: Obtains a quadratic equation and states that their quadratic equation represents a parabola				
(b) M1: SI A1: A	Sketches a parabola with symmetry about the real axis Accurate sketch			

Quest	tion	Scheme	Marks	AOs
3 (a) Finds the characteristic equation	on $(2-\lambda)^2(4-\lambda)-(4-\lambda)=0$	M1	2.1
	So $(4-\lambda)(\lambda^2 -$	$-4\lambda+3$ = 0 so $\lambda = 4$ *	A1*	2.2a
	Solves quadratic equation to g	give	M1	1.1b
	$\lambda =$	1 and $\lambda = 3$	A1	1.1b
			(4)	
(b)	Uses a correct method to find a	n eigenvector	M1	1.1b
	Obtains a vector parallel to or	the of $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$ or $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ or $\begin{pmatrix} 3\\-3\\1 \end{pmatrix}$	A1	1.1b
	Obtains two correct vectors		A1	1.1b
	Obtains all three correct vector	rs	A1	1.1b
			(4)	
(c)	Uses their three vectors to for	m a matrix	M1	1.2
	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	or other correct answer with columns in a different order	A1	1.1b
			(2)	
			(10 n	narks)
Notes	:			
 (a) M1: Attempts to find the characteristic equation (there may be one slip) A1*: Deduces that λ = 4 is a solution by the method shown or by checking that λ = 4 satisfies the characteristic equation M1: Solves their quadratic equation A1: Obtains the two correct answers as shown above 				
(b) M1: A1: A1: A1:	Uses a correct method to find an eigenvector Obtains one correct vector (may be a multiple of the given vectors) Obtains two correct vectors (may be multiples of the given vectors) Obtains all three correct vectors (may be multiples of the given vectors)			
(c) M1: A1:	(c) M1: Forms a matrix with their vectors as columns A1: $\begin{pmatrix} 0 & 1 & 3 \\ 0 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix}$ or $\begin{pmatrix} 1 & 0 & 3 \\ 1 & 0 & -3 \\ 1 & 1 & 1 \end{pmatrix}$ or $\begin{pmatrix} 3 & 1 & 0 \\ -3 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ or other correct alternative			

Question	Scheme	Marks	AOs
4(i)	If we assume $ab = b\pi$; as a^2b ba then ab a^2b	M1	2.1
	So $a^{-1}abb^{-1} = a^{-1}a^2bb^{-1}$	M1	2.1
	So $e=a$	A1	2.2a
	But this is a contradiction, as the elements <i>e</i> and <i>a</i> are distinct so $ab \neq ba$	A1	2.4
		(4)	
(ii)(a)	2 has order 4 and 4 has order 2	M1	1.1b
	7, 8 and 13 have order 4	A1	1.1b
	11 and 14 have order 2 and 1 has order 1	A1	1.1b
		(3)	
(ii)(b)	Finds the subgroup $\{1, 2, 4, 8\}$ or the subgroup $\{1, 7, 4, 13\}$	M1	1.1b
	Finds both and refers to them as cyclic groups, or gives generator 2 and generator 7	A1	2.4
	Finds {1, 4, 11, 14}	B1	2.2a
	States each element has order 2 or refers to it as Klein Group	B1	2.5
		(4)	
(ii)(c)	J has an element of order 8, (H does not) or J is a cyclic group (H is not) or other valid reason	M1	2.4
	They are not isomorphic	A1	2.2a
		(2)	
(13 mark			narks)

Quest	ion 4 notes:
(i)	
M1:	Proof begins with assumption that $ab = ba$ and deduces that this implies $ab = a^2b$
M1:	A correct proof with working shown follows, and may be done in two stages
A1:	Concludes that assumption implies that $e=a$
A1:	Explains clearly that this is a contradiction, as the elements <i>e</i> and <i>a</i> are distinct so $ab \neq ba$
(ii)(a)	
M1:	Obtains two correct orders (usually the two in the scheme)
A1:	Finds another three correctly
A1:	Finds the final three so that all eight are correct
(ii)(b)	
M1:	Finds one of the cyclic subgroups
A1:	Finds both subgroups and explains that they are cyclic groups, or gives generators 2 and 7
B1:	Finds the non cyclic group
B1:	Uses correct terms that each element has order 2 or refers to it as Klein Group
(ii)(c)	
M1:	Clearly explains how J differs from H
A1:	Correct deduction

Quest	ion Scheme	Marks	AOs	
5(a	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\sinh 2x$	B1	2.1	
	So $S = \int \sqrt{1 + \sinh^2 2x} dx$	M1	2.1	
	$\therefore s = \int \cosh 2x \mathrm{d}x$	A1	1.1b	
	$= \left[\frac{1}{2}\sinh 2x\right]_{-\ln a}^{\ln a} \text{ or } \left[\sinh 2x\right]_{0}^{\ln a}$	M1	2.1	
	$= \sinh 2\ln a = \frac{1}{2} \left[e^{2\ln a} - e^{-2\ln a} \right] = \frac{1}{2} \left(a^2 - \frac{1}{a^2} \right) \qquad (\text{so } k = \frac{1}{2})$		1.1b	
		(5)		
(b)	$\frac{1}{2}\left(a^2 - \frac{1}{a^2}\right) = 2 \text{ so } a^4 - 4a^2 - 1 = 0$	M1	1.1b	
	$a^2 = 2 + \sqrt{5}$ (and $a = 2.06$ (approx.))	M1	1.1b	
	When $x = \ln a$, $y = 0$ so $A = \frac{1}{2} \cosh(2\ln a)$	M1	3.4	
	Height = A - 0.5 = awrt 0.62m	A1	1.1b	
		(4)		
(c)	The width of the base = $2\ln a = 1.4$ m	B1	3.4	
		(1)		
(d)	A parabola of the form $y = 0.62 - 1.19 x^2$, or other symmetric curve with its equation e.g. $0.62\cos(2.2x)$	M1A1	3.3 3.3	
		(2)		
		(12 n	narks)	
Notes	i			
(a) B1: M1: A1: M1: A1:	Starts explanation by finding the correct derivative Uses their derivative in the formula for arc length Uses suitable identity to simplify the integrand and to obtain the expression in scheme Integrates and uses appropriate limits to find the required arc length Uses the definition of sinh to complete the proof and identifies the value for k			
(b) M1:	Uses the formula obtained from the model and the length of the arch to create a quartic equation			
M1: M1·	Continues to use this model to obtain a quadratic and to obtain values for a	а		
A1:	Finds a value for the height correct to 2sf (or accept exact answer)			
(c) B1:	Finds width to 2 sf i.e. 1.4m			
(d) M1: A1:	Chooses or describes an even function with maximum point on the y axis Gives suitable equation passing through $(0, 0.62)$ and $(0.7, 0)$ and $(-0.7, 0)$			

Question	Scheme	Marks	AOs
6(a)	$(x+6)^2 + y^2 = 4[(x-6)^+ y^2]$	M1	2.1
	$x^2 + y^2 - 20x + 36 = 0$ which is the equation of a circle*	A1*	2.2a
		(2)	
(b)	<i>y</i>	M1	1.1b
		A1	1.1b
		(2)	
(c)	Let $a = c + id$ and $a^* = c - id$ then (c + id)(x - iy) + (c - id)(x + iy) = 0	M1	3.1a
	So $y = -\frac{c}{d}x$	A1	1.1b
		B1	3.1a
	The gradients of the tangents (from geometry) are $\pm \frac{4}{3}$		
	So $-\frac{c}{d} = \pm \frac{4}{3}$ and $\frac{d}{c} = \pm \frac{3}{4}$	M1	3.1a
	So $\tan \theta = \pm \frac{3}{4}$	A1	1.1b
		(5)	

Quest	Question 6 notes:		
(a)			
M1:	Obtains an equation in terms of x and y using the given information		
A1*:	Expands and simplifies the algebra, collecting terms and obtains a circle equation correctly, deducing that this is a circle		
(b)			
M1:	Draws a circle with centre at $(10, 0)$		
A1:	(Radius is 8) so circle does not cross the y axis		
(c)			
M1:	Attempts to convert line equation into a cartesian form		
A1:	Obtains a simplified line equation		
B1:	Uses geometry to deduce the gradients of the tangents		
M1:	Understands the connection between arg <i>a</i> and the gradient of the tangents and uses this		
	connection		
A1:	Correct answers		

Quest	ion Scheme	Marks	AOs
7(a	$I_n = \int_0^{\frac{\pi}{2}} \sin x \sin^{n-1} x dx$	M1	2.1
	$= \left[-\cos x \sin^{n-1} x \right]_{0}^{\frac{\pi}{2}} - (-) \int_{0}^{\frac{\pi}{2}} \cos^{2} x (n-1) \sin^{n-2} x dx$	A1	1.1b
	Obtains $= 0 - (-) \int_0^{\frac{x}{2}} (1 - \sin^2 x) (n - 1) \sin^{n-2} x dx$	M1	1.1b
	So $I_n = (n-1)I_{n-2} - (n-1)I_n$ and hence $nI_n = (n-1)I_{n-2}$ *	A1*	2.1
		(4)	
(b)	uses $I_n = \frac{(n-1)}{n} I_{n-2}$ to give $I_{10} = \frac{9}{10} I_8$ or $I_2 = \frac{1}{2} I_0$	M1	3.1b
	So $I_{10} = \frac{9 \times 7 \times 5 \times 3 \times 1}{10 \times 8 \times 6 \times 4 \times 2} I_0 \mathbf{x}$	M1	2.1
	$I_0 = \frac{\pi}{2}$	B1	1.1b
	Required area is $2(I_2 - I_{10}) = $ or $8 \times \frac{1}{4}(I_2 - I_{10}) =$	M1	3.1b
	$= 2\left(\frac{\pi}{4} - \frac{63\pi}{512}\right) = \frac{65\pi}{256} \mathrm{m}^2$	A1	1.1b
		(5)	
		(9 n	narks)
Notes	:		
(a) M1:	Splits the integrand into the product shown and begins process of integration by parts (there may be sign errors)		
A1: M1:	Correct work Uses limits on the first term and expresses \cos^2 term in terms of \sin^2		
$\frac{\mathbf{A}\mathbf{I}^{\star}}{\mathbf{(h)}}$	Completes the proof collecting I_n terms correctly with all stages shown		
(0) M1·	Attempts to find $I_{and/or}I_{and/or}$		
M1.	Finds I in terms of I		
	Finds I_{10} in terms of I_{0}		
BI:	Finds I_0 correctly		
A1:	Completes the calculation to give this exact answer		

Quest	tion Scheme	Marks	AOs	
8 (a	a) $u_1 = 1$ as there is only one way to go up one step	B1	2.4	
	$u_2 = 2$ as there are two ways: one step then one step or two steps	B1	2.4	
	If first move is one step then can climb the other $(n-1)$ steps in u_{n-2} ways. If first move is two steps can climb the other $(n-2)$ steps is u_{n-2} ways so $u_n = u_{n-1} + u_{n-2}$	n B1	2.4	
		(3)		
(b)	Sequence begins 1, 2, 3, 5, 8, 13, 21, 34, so 34 ways of climbin 8 steps	^{ng} B1	1.1b	
		(1)		
(c)	To find general term use $u_n = u_{n-1} + u_{n-2}$ gives $\lambda^2 = \lambda - 1$	M1	2.1	
	This has roots $\frac{1 \pm \sqrt{5}}{2}$	A1	1.1b	
	So general form is $A\left(\frac{1+\sqrt{5}}{2}\right)^n + B\left(\frac{1-\sqrt{5}}{2}\right)^n$	M1	2.2a	
	Uses initial conditions to find <i>A</i> and <i>B</i> reaching two equations in and <i>B</i>	A M1	1.1b	
	Obtains $A = \left(\frac{1+\sqrt{5}}{2\sqrt{5}}\right)$ and $B = -\left(\frac{1-\sqrt{5}}{2\sqrt{5}}\right)$ and so when $n = 400$ obtains $\frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2}\right)^{401} - \left(\frac{1-\sqrt{5}}{2}\right)^{401} \right] *$) A1*	1.1b	
		(5)		
		(9	marks)	
Notes	5:			
(a) B1:	Need to see explanation for $u_{1} = 1$			
B1:	Need to see explanation for $u_2 = 2$ with the two ways spelled out			
B1:	Need to see the first move can be one step or can be two steps and clear explanation of the iterative expression as in the scheme			
(b) B1:	• The answer is enough for this mark			
(c) M1: A1: M1: M1:	Obtains this characteristic equation Solves quadratic – giving exact answers Obtains a general form Use initial conditions to obtains two equations which should be $A(1 + \sqrt{5}) + B(1 - \sqrt{5}) = 2$			
A 1 *-	o.e. and $A(3+\sqrt{5}) + B(3-\sqrt{5}) = 4$ but allow slips here Must see event correct values for A and B and correlation since for $u = 400$			
Al*:	Must see exact correct values for A and B and conclusion given for $n = 400$			