Write your name here		
Surname	C	Other names
Edexcel GCE	Centre Number	Candidate Number
Chemistr Advanced Subsidia Unit 1: The Core Pr	ary	hemistry
Wednesday 3 June 2009 -	- Morning	Paper Reference
Time: 1 hour 15 minutes		6CH01/01
Candidates may use a calcul	ator.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Questions labelled with an **asterisk** (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

edexcel advancing learning, changing lives

7/7/3/

3 Some mean bond enthalpy values are given in the table below.

Bond	Mean bond enthalpy / kJ mol ⁻¹
Н—Н	+436
I—I	+151
H—I	+299

What is the enthalpy change for the reaction shown below in kJ mol⁻¹?

		$H_2(g) + I_2(g) \rightarrow 2HI(g)$
🖾 A	+436 + 151 - 299	= +288
B	-436 - 151 + 299	= -288
C	+436 +151 - (2 × 299)	= -11
D 🛛	-436 - 151 + (2 × 299)	= +11

(Total for Question 3 = 1 mark)

4 A compound was analysed and found to contain

1.45 g carbon0.482 g hydrogen[Relative atomic masses: C = 12; H = 1; N = 14]

The empirical formula of the compound is

A CH₃N

 $\square \mathbf{B} \operatorname{CH}_4 \mathbf{N}$

 \square C CH₅N

 \square **D** C₂H₄N

1.69 g nitrogen

(Total for Question 4 = 1 mark)

6	< 10	me the molar map p^{23} mol ⁻¹ .]	ass of $AI_2(SO_4)$	p_3 is 342 g f	mol ¹ and	the Avog	adro Cons	tant 1s	
\times	A	3×10^{21}							
X	B	1×10^{22}							
×	С	3×10^{22}							
×	D	9×10^{22}							
						(Total	for Quest	ion 5 = 1 m	ark)
		ate the mass of mol dm ⁻³ solution		oxide, Ca(C	DH) ₂ , pres	ent in 100) cm ³ of a		
[A	ssur	me the molar ma	ass of Ca(OH)	$_{2}$ is 74.0 g	mol^{-1} .]				
\times	A	0.570 g							
\times	B	0.740 g							
\times	С	1.85 g							
\times	D	3.70 g							
						(Total	for Questi	ion 6 = 1 m	ark)
U	se tl	his space for an	v rough wor	king. Anv	thing vor	ı write in	this space	will gain i	no cr
C				j			····· ····	, ,, 9	

onization	~					
energy	first	second	third	fourth	fifth	
Value / kJ mol ⁻¹	590	1100	4900	6500	8100	
Which ion is X	most likely to	form when it re	eacts with chlo	orine?		
\square A X ⁺						
B X ²⁺						
C X ³⁺						
\square D X ⁴⁺						
			(Total for Ques	tion 7 = 1 mark)	
Which of the fol	lowing alkene	es exhibits E-Z	isomerism?			
■ A H ₃ CCH=	$=C(CH_3)_2$					
B $(CH_3)_2C$	=CH ₂					
\Box C H ₂ C=C	HCH ₂ CH ₃					
\square D H ₃ CCH=	=CHCH ₃					
			(Total for Ques	tion 8 = 1 mark)	
	lowing govel	ont bonds is the	shortost?			
Which of the fol	lowing covale		511011051?		. I.	
Which of the fol						
🛛 A H—F						

	h of the following substances, obtained from the fractional distillation of crude oil, ne lowest boiling temperature?
	refinery gas
B	kerosene
	diesel oil
🖾 D	lubricating oil
	(Total for Question 10 = 1 mark
11 Sodi	Im hydrogensulfate, NaHSO ₄ , reacts with sodium hydroxide, NaOH, as shown below.
	$NaHSO_4(aq) + NaOH(aq) \rightarrow Na_2SO_4(aq) + H_2O(l)$
	0 mol of sodium hydrogensulfate is neutralized with dilute sodium hydroxide, entration 0.200 mol dm ^{-3} .
Calc	late the volume of sodium hydroxide required.
🖾 A	20.0 cm ³
🖾 B	50.0 cm ³
	100 cm ³
🖾 D	500 cm ³
	(Total for Question 11 = 1 mark
	(Total for Question 11 = 1 mar h of the following ions would undergo the greatest deflection in a spectrometer?
	³⁵ Cl ²⁺
	³⁵ Cl ⁺
🖾 B	
⊠ B ⊠ C	$^{37}\text{Cl}^+$

	n pair of atomic numbers represents elements which are both in the p-block of the lic Table?	
🖾 A	4, 8	
	6, 12	
	8, 16	
	10, 20	
	(Total for Question 13 = 1 mark)	
14 The el be	ectronic structure of an atom of an element in Group 6 of the Periodic Table could	
A	$1s^2 2s^2 2p^2$	
B	$1s^2 2s^2 2p^4$	
C	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$	
D 🛛	$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6$	
	(Total for Question 14 = 1 mark)	
	n of the following formulae for compounds of germanium, Ge, is unlikely to be t, given the position of germanium in the Periodic Table?	
A	GeF ₃	
B	GeS ₂	
C	GeO ₂	
D 🛛	GeH ₄	
	(Total for Question 15 = 1 mark)	
Use t	his space for any rough working. Anything you write in this space will gain no credit.	

🖾 A	$1s^1$
B	$1s^2$
C	$1s^2 2s^1$
D 🛛	$1s^2 2s^2$
	(Total for Question 16 = 1 mark
	of the following gas samples occupies the greatest volume at the same rature and pressure?
[Relat	ive atomic masses: H = 1; C = 12; O = 16; F = 19; Ne = 20]
A	1 gram of ethane
B	1 gram of oxygen
C C	1 gram of fluorine
D 🛛	1 gram of neon
	(Total for Question 17 = 1 mark
18 Which	of the following has the smallest ionic radius?
A	F-
B	Na ⁺
C	Mg^{2+}
D	O ²⁻

19 Which of the following does not have exactly 10 electrons?

- **▲** An ion of fluorine, F⁻
- \square **B** A molecule of methane, CH₄
- \square C A molecule of nitrogen, N₂
- \square **D** An ion of sodium, Na⁺

(Total for Question 19 = 1 mark)

- **20** Which of the following statements correctly describes an environmental problem caused by the burning of hydrocarbon fuels?
 - A The carbon dioxide is toxic and kills plants.
 - **B** The smoke produced reflects sunlight and leads to global warming.
 - \square C The water produced results in a damaging increase in rainfall.
 - **D** The carbon dioxide produced absorbs heat radiated from the Earth and leads to global warming.

(Total for Question 20 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

Use this space for any rough working. Anything you write in this space will gain no credit.

Write your answers in the spaces provided	1.
fuel sold as an alternative to petrol. It is a es.	
es are liquefied.	(1)
of the C_4 alkanes in the spaces provided.	
	(4)
Second skeletal formula	
Name:	
	es. es are liquefied. of the C ₄ alkanes in the spaces provided.

Compounds with the same molecular formula but different structural formula

(b) Propane, $C_{3}H_{8}$, reacts with chlorine, Cl_{2} , in a substitution reaction.	
$C_{3}H_{8} + Cl_{2} \rightarrow C_{3}H_{7}Cl + HCl$	
The mechanism for this reaction is described in three stages.	
(i) Give the initiation step for this reaction and state the condition necessary for this step to accur	
this step to occur.	(2)
Initiation step	
Condition	
(ii) Give the TWO propagation steps for this reaction.	(2)
	(-)
(iii) Give a possible termination step for this reaction.	(1)

BLANK PAGE

energy changes.		
Energy change	Letter	ΔH /kJ mol ⁻¹
Lattice energy for sodium chloride		-775
Enthalpy change of atomization of sodium		+109
Enthalpy change of atomization of chlorine		+121
First ionization energy of sodium		+494
First electron affinity of chlorine		
Enthalpy change of formation of sodium chloride		-411

(a) (i) Complete the table below by adding the letters A to F next to the corresponding

(ii) Calculate the first electron affinity of chlorine, in $kJ mol^{-1}$, from the data given.

(2)

Compound	Experimental lattice energy / kJ mol ⁻¹	Theoretical lattice energy / kJ mol ⁻¹	
NaCl	-770	-766	
Agl	-889	-778	
	he fact that there is close agreemer	nt between the values for	
sodium chloric	le, NaCl.		(1)
	ms of chemical bonding, why the e AgI, is more exothermic than the va ompound.		
			(2)

group.	(2)
	$(T_{a}t_{a}) f_{a}t_{a} O_{a}t_{a}t_{a} = 10 m_{a}t_{a}$
	(Total for Question 22 = 10 marks)

Explain why the melting temperature increases from sodium to aluminium.	(2)
) Magnesium forms the basic oxide magnesium oxide, MgO. This oxide is almost insoluble in water. On gentle warming with dilute sulfuric acid, magnesium oxide reacts to form aqueous magnesium sulfate solution.	
*(i) Describe how you would use the above reaction to prepare a pure sample of magnesium sulfate.	
	(5)
 (ii) Suggest what action should be taken if a pupil spilt a small quantity of dilute sulfuric acid on a laboratory bench. 	
	(1)

	Soluble in water	Insoluble in water	
	MgSO ₄	MgCO ₃ SrCO ₃ SrSO ₄	
Magnesium ca	arbonate reacts with dilute sulf	uric acid.	
	$MgCO_3(s) + H_2SO_4(aq) \rightarrow N$	$\operatorname{HgSO}_4(\operatorname{aq}) + \operatorname{CO}_2(\operatorname{g}) + \operatorname{H_2O}(\operatorname{l})$	
		tium carbonate and dilute sulfuric	acid
stops afte	r a few seconds.		(1)
strontium Give the	ionic equation for the reaction,	including state symbols.	(2)
		(Total for Question 23 =	16 marks)
			ro marksj

24 Propanone, C₃H₆O, undergoes complete combustion to form carbon dioxide and water. $C_3H_6O(l) + 4O_2(g) \rightarrow 3CO_2(g) + 3H_2O(l)$ (a) In an experiment to calculate the enthalpy change of combustion for propanone, 2.90 g of propanone was burned completely in oxygen. The heat energy from this combustion raised the temperature of 200 g of water from 20.2 °C to 78.4 °C. The specific heat capacity of water is $4.18\,J\,g^{-1}\,{}^{\circ}C^{-1}.$ (i) Calculate the number of moles of propanone present in 2.90 g. [The molar mass of propanone is 58 g mol⁻¹.] (1) (ii) Use the expression energy transferred (J) = mass $\times \frac{\text{specific heat}}{\text{capacity}} \times \frac{\text{temperature}}{\text{change}}$ to calculate the heat energy transferred to raise the temperature of 200 g of water from 20.2 °C to 78.4 °C. (2) (iii) Use your answers to (a)(i) and (ii) to calculate a value for the enthalpy change of combustion of propanone. Give your answer to three significant figures and include a sign and units. (3)

A Data Book value for the standard enthalpy change of combustion for butanone is $-2440 \text{ kJ mol}^{-1}$.				
(i)	Suggest a reason why the value obtained in the experiment is so different from the Data Book value.	(1)		
(ii)	This Data Book value (–2440 kJ mol ⁻¹) refers to the following equation.			
	$C_4H_8O(l)$ + ¹¹ / ₂ $O_2(g)$ → $4CO_2(g)$ + $4H_2O(l)$			
	How would the value be different if it referred to the formation of water in the gaseous state? Justify your answer.	(2)		
		(2)		
· · · · · · · · · · · · · · · · · · ·	ndard enthalpy changes of combustion can be used to calculate the standard			
	halpy change of formation of a compound. Define the term standard enthalpy change of formation , making clear the			
	meaning of standard in this context.	(3)		
(i)				

(ii) Use the standard enthalpy changes of combustion, ΔH_c^{\ominus} , given in the table below to find the standard enthalpy change of formation for ethanoic acid, CH₃COOH, in kJ mol⁻¹.

Substance	$\Delta H_{\rm c}^{\ominus}$ / kJ mol ⁻¹				
C(s, graphite)	-394				
H ₂ (g)	-286				
CH ₃ COOH(l)	-870				

 $2C(s, graphite) + 2H_2(g) + O_2(g) \rightarrow CH_3COOH(l)$

(3)

(Total for Question 24 = 15 marks)

BLANK PAGE

BLANK PAGE

0 (8) (18) 4.0 Helium	2 20.2 Neon 10	39.9 Ar argon 18	83.8 Kr krypton 36	131.3 Xe 54	[222] Rn adon 86	fed	
~	(17) 19.0 F fluorine 9	35.5 Cl chlorine 17	79.9 Br bromine 35	126.9 iodine 53	[210] At astatine 85	Elements with atomic numbers 112-116 have been reported but not fully authenticated	175 Lu Iutetium 71 [257] Lr Iawrencium 103
٩	(16) 16.0 O sxygen 8	32.1 S sulfur 16	79.0 Se selenium 34	127.6 Te tellurium 52	[209] Po polonium 84	-116 have l nticated	173 Ytterbium 70 [254] No nobelium 102
n	(15) 14.0 N nitrogen 7	31.0 P phosphorus 15	74.9 AS arsenic 33	121.8 Sb antimony 51	209.0 Bi bismuth 83	tomic numbers 112-116 hav but not fully authenticated	169 Tm thuitium 69 [256] Md mendekevium 101
4	(14) 12.0 C carbon 6	28.1 Si silicon 14	72.6 Ge germanium 32	118.7 Sn tin 50	207.2 Pb lead 82	atomic nu but not f	167 Er erbium 68 68 [253] 100 100
m	(13) 10.8 B boron 5	27.0 Al aluminium 13	69.7 Ga ^{galtium} 31	114.8 In indium 49	204.4 Tl thallium 81	nents with	165 Hotmium 67 [254] Es einsteinium 99
ents		(12)	65.4 Zn zinc 30	112.4 Cd cadmium 48	200.6 Hg ^{mercury} 80		163 163 dysprosium 66 66 Cf californium 98
The Periodic Table of Elements		(11)	63.5 Cu copper 29	107.9 Ag silver 47	197.0 Au ^{gold} 79	[272] Rg roentgenium 111	159 159 terbium 65 [245] BK berkelium 97
le of		(10)	58.7 Ni nickel 28	106.4 Pd palladium 46	195.1 Pt platinum 78	[271] DS damstadtium 110	157 6d 8adotinium 64 [247] Cm aunum 96
c Tab		(6)	58.9 Co cobalt 27	102.9 Rh rhodium 45	192.2 Ir iridium 77	[268] Mt meitnerium 109	152 Eu europium 63 (243) Am americum 95
riodio 1.0 hydrogen	~	(8)	55.8 Fe iron 26	101.1 Ru ruthenium	190.2 Os osmium 76	[277] HS hassium 108	[147]150PromethiumSmpromethiumsamarium616263949394
Je Pe		(2)	52.0 54.9 Cr Mn chromium manganese 24 25	[98]101.1TcRutechnetiumruthenium4344	186.2 Re rhenium 75	[264] Bh bohrium 107	141 144 [147] Pr Nd Pm prasedomium neodymium promethium 59 60 61 231] 238 [237] Pa U Np protectinium uranium neptunium 91 92 93
È	mass bol	(9)	52.0 Cr chromium 24	95.9 MO molybdenum 42	183.8 V tungsten 74	[266] Sg seaborgium 106	144 neodymium 60 U U V 92
	Key relative atomic mass atomic symbol ^{name} atomic (proton) number	(5)	50.9 V vanadium 23	92.9 ND niobium 41	180.9 Ta tantalum 73	[262] DD dubnium 105	141 Praseodymium 59 [231] Pa protactinium 91
		(4)	47.9 Ti titanium 22	91.2 Zr zirconium 40	178.5 Hf hafnium 72	[261] Rf rutherfordium 104	140 Cerium 58 232 232 thorium 90
		(3)	45.0 SC scandium 21	88.9 Yttrium 39	138.9 La* lanthanum 57	[227] AC* actinium 89	ະ
7	(2) 9.0 Be beryllium 4	24.3 Mg magnesium 12	40.1 Ca calcium 20	87.6 Sr strontium 38	137.3 Ba barium 56	[226] Ra radium 88	* Lanthanide series * Actinide series
-	(1) 6.9 Li lithium 3	23.0 Na sodium 11	39.1 K potassium 19	85.5 Rb rubidium 37	132.9 Cs caesium 55	[223] Fr francium 87	* Lanth * Actini

