

Mark Scheme (Results)

January 2016

International GCSE Chemistry (4CH0) Paper 1C Science Double Award (4SC0) Paper 1C

Pearson Edexcel Certificate in Chemistry (KCH0) Paper 1C Science (Double Award) (KSC0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

January 2016 Publications Code UG043140 All the material in this publication is copyright © Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a) (i)	A (Ag)		1
(ii)	D (Zr)		1
(b) (i)	3		1
(ii)	(The atom has) three <u>electrons</u> in its outer / valence shell	'energy level' for 'shell' ignore references to inner shells ignore 'it has a valency of 3'	1
(iii)	3		1
(iv)	(The atom has) electrons in three shells / three shells are occupied (with electrons)	'energy levels' for 'shells' accept 'it has three shells'	1
(v)	aluminium / Al		1
(c)	x x x x x x x x x x x x x x x x x x x	accept any symbol for electrons, eg dots, the letter 'e'	1

Question number	Answer		Notes	Marks
2 (a)	C (halogens)			1
(b) (i)	M1 atoms of the same element		accept ' <u>atoms</u> with the same atomic number' / ' <u>atoms</u> with the same number of protons'	1
	M2 with different masses		accept 'different mass numbers' / 'different numbers of neutrons' ignore references to electrons unless incorrect	1
(ii)	Isotope Number Numb of of protons neutro	of		3
	⁷⁹ ₃₅ Br 35 44	35		
	⁸¹ ₃₅ Br 35 46	35		

	M1 first column correct M2 second column correct		
	M3 third column correct		
(c)	ethane – no change (in colour)	accept '(stays) orange' ignore 'no reaction' /'nothing happens'	1
			1
	ethene – (orange to) colourless / decolourises	ignore 'discolours' ignore starting colour of bromine	

Question number	Answer	Notes	Marks
3 (a)	nitrogen / N ₂	accept N	1
(b)	oxygen AND water	accept steam	1
(c)	incomplete combustion (of the octane / fuel)	accept '(burns in a) limited supply / shortage of oxygen/air' reject 'no oxygen'	1
(d) (i)	$N_2 + 2O_2 \rightarrow 2 NO_2$	accept halves and multiples accept as two correct equations via NO	1
(ii)	(It produces) acid rain OR (it causes) breathing problems / asthma	accept 'photochemical smog' ignore refs to greenhouse gas / global warming / climate change ignore refs to pollution	1

Question number	Answer	Notes	Marks
4 (a)	water	accept H ₂ O	1
		accept water vapour	
		if both name and formula given mark name only	
(b)	carbon dioxide	accept CO ₂	1
		if both name and formula given mark name only	
(c)	M1 (the copper / it) reacts with oxygen / oxidises	accept 'combines with/joins with/burns in oxygen' ignore 'air'	2
		accept 'copper oxide'	
	M2 to form copper(II) oxide (which is black)	reject 'copper(I) oxide'	

	Question number	Answer	Notes	Marks
(b)	(i)	25 (cm ³)	accept anomalous point based on graph drawn	1
	(ii)	M1 the volumes (of gas) are the same	accept 'no more gas is being produced/collected (after 35 cm ³)'	2
		M2 therefore the reaction has finished / all of the solid/MgCO ₃ has reacted / the solid/MgCO ₃ has been used up	reject 'all of the reactants have reacted' reject 'all of the acid has reacted' ignore refs to MgCO ₃ dissolving accept refs to MgCO ₃ being limiting reagent	
	(iii)	value correctly read to nearest gridline from candidate's graph		1
	(iv)	value correctly read to nearest gridline from candidate's graph		1

Question number	Answer	Notes	Marks
6 (a) (i)	$2HgO \rightarrow 2Hg + O_2$	accept halves and multiples	1
(ii)	redox	accept '(thermal) decomposition' ignore 'oxidation' allow 'reduction'	1
(b) (i)	(tap / dropping / separating) funnel	reject 'filter / thistle funnel'	1
(ii)	(the gas / it) contains air (from the conical flask)	accept 'contains impurities' or ref to possible named impurity eg nitrogen reject 'water vapour' allow 'contains less <u>oxygen</u> '	1
(c)	 M1 perform reaction with and without catalyst M2 keep remaining variables (eg concentration or volume of hydrogen peroxide / temperature) the same M3 measure time (to fill the gas jar with oxygen) M4 oxygen produced more quickly/at a faster rate/in a shorter time (in experiment) with catalyst OR M1 weigh a sample of manganese(IV) oxide 	 accept: M1 perform reaction with and without catalyst M2 oxygen produced more quickly/at a faster rate/in a shorter time (in experiment) with catalyst M3 weigh a sample of manganese(IV) oxide (before putting it into the conical flask) M4 the mass at the end of the reaction should be the same as at the start 	4

	(before putting it into the conical flask)		
	M2 filter (to remove the solid)		
	M3 dry the solid (and re-weigh it)		
	M4 the mass should be the same as before		
(d) (i)	$SO_2 + H_2O \rightarrow H_2SO_3$	accept SO ₂ + H ₂ O + $V_2O_2 \rightarrow H_2SO_4$ allow products shown as correct ions	1
(ii)	M1 (Universal Indicator turns) orange/yellow	accept 'red' allow 'contains sulfurous / sulfuric acid'	2
	M2 (the solution/it) is acidic / contains hydrogen ions / contains H ⁺ ions		

Question number	Answer	Notes	Marks
7 (a)	M1 (Curve) A		3
	M2 faster reaction (at higher temperature)	M2 and M3 dep on correct or missing M1 accept 'reaction takes less time'	
	M3 therefore curve is steeper / curve levels off sooner		
(b)	M1 (Curve) C		3
	M2 only half the mass/amount of zinc used	M2 and M3 dep on correct or missing M1 accept 'less zinc used, so less hydrogen	
	M3 therefore only half the volume / 20 cm ³ of hydrogen produced	produced' for 1 mark, if M2 and M3 not scored	

Question number	Answer	Notes	Marks
8 (a)	(because) a precipitate was formed/a reaction took place each time Y was used	accept 'it reacts with X and Z (to form a precipitate)'	1
	OR		
	no precipitate was formed/no reaction took place when X and Z were added together		
		allow use of correct names for X, Y and Z	
(b)	M1 X is (sodium) iodide and Z is (sodium) chloride		2
	M2 because X gives yellow precipitate or Z gives white precipitate		
	OR		
	M1 X is (sodium) iodide because it forms a yellow precipitate		
	M2 therefore Z is (sodium) chloride		
	OR		
	M1 Z is (sodium) chloride because it forms a white precipitate		
	M2 therefore X is (sodium) iodide		

(c)	M1 no change/no reaction with (sodium) chloride		2
	M2 colour change (to brown solution) with (sodium) iodide	accept 'orange' / 'orange-brown' accept 'grey/black <u>precipitate</u> ' reject incorrect colour change	

Question number	Answer	Notes	Marks
9 (a)	M1 coke	ignore 'carbon' / 'charcoal'	2
	M2 limestone	ignore 'calcium carbonate'	
	accept answers in either order	ignore formulae	
(b) (i)	Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO ₂		2
	M1 all formulae correct		
	M2 balanced	M2 dep on M1	
(ii)	M1 iron / Fe		2
	M2 (it has) lost oxygen	M2 dep on M1 or near miss eg Fe_2O_3 accept 'iron (III) ions / Fe^{3+} has gained electrons' accept 'oxidation number of iron decreases / oxidation number of iron changes from +3 to 0'	
(c) (i)	$C + O_2 \rightarrow CO_2$		1
(ii)	C (neutralisation)		1

(d)	(i)	M1 oxygen	accept 'air'	2
		M2 water	accept 'moisture' / 'water vapour' ignore 'steam' accept answers in either order	
	(ii)	prevents oxygen/water from coming into contact with the iron	accept refs to acting as a barrier	1
(e)	(i)	galvanising	ignore 'sacrificial protection'	1
	(ii)	 M1 zinc is more reactive than iron / loses electrons more readily M2 (and therefore) corrodes in preference (to the iron) 	ignore 'sacrificial protection' accept 'reacts (with oxygen/water) in preference (to the iron)' accept refs to zinc converting iron(II) ions to iron (atoms) reject 'zinc rusts' for M2	2
(f)	(i)	(aluminium/it) is too reactive / more reactive than carbon / <u>above</u> carbon in the reactivity series	accept 'carbon is less reactive than aluminium' accept 'the temperature required is too high' ignore refs to carbon monoxide	1
	(ii)	energy costs are too great / electricity is expensive	allow 'it is cheaper to use the blast furnace' ignore refs to iron being below carbon in the reactivity series	1

	Question number		Answer	Notes	Marks
10	(a)		(the molecule) contains a (carbon to carbon) double bond	accept 'multiple bond' ignore refs to single bonds	1
	(b)	(i)	C_8H_{18} and C_2H_4	Ignore names of compounds	1
		(ii)	M1 600-700°C		2
			M2 silica / alumina (catalyst)	accept 'aluminium oxide / silicon dioxide / aluminosilicate / zeolite' accept correct formulae	
	(c)	(i)	M1 (they have) the same <u>molecular</u> formula	allow 'both have same number of carbon and hydrogen (atoms as each other)' accept 'the atoms are arranged differently'	2
			M2 (but have) different structural formulae /		
		(ii)	displayed formulae / structures H_{1} H_{2} H_{2} H_{2} H_{1} H_{2} H_{1} H_{2} $H_{$	accept CH_3 H_3 H CH_3 ignore bond angles accept fully displayed formula	1

10	(d)	(i)	poly(propene) / polypropene	accept 'polypropylene'	1
		(ii)	CH₃ H −C−−C−− H H	ignore brackets and 'n'	2
			M1 correct structure M2 extension bonds	M2 dep on M1 except award M2 if >1 repeat unit given	
	(e)		$ \begin{array}{c} H & COOCH_3 \\ $	penalise incorrect use of upper / lower case letters and subscripts penalise bonds to incorrect atoms	1

Question number		Answer	Notes	Marks
11 (a)		M1 chromate (ions) are negative	accept 'anions'	2
		M2 so they are attracted/move towards positive electrode/electrode B	accept 'anode'	
(b)	(i)	2 2 (1) (1)	accept halves and multiples	1
	(ii)	B (HCI(aq))		1
(c)	(i)	aq aq s	Do not accept words eg aqueous	1
	(ii)	M1 filter (off the precipitate)	allow 'decant'	3
		M2 wash (with distilled/deionised/pure water)	reject refs to crystallisation for M2 and M3	
		M3 dry in a warm oven / leave to dry / dry with filter paper	allow 'heat it'	

	Question number		Answer	Notes	Marks
12	(a)	(i)	M1 0.53 ÷ 106		2
			M2 0.005(0) (mol)	correct answer scores (2)	
		(ii)	M1 $n(CO_2) = 0.005$ mol / answer to (a)(i)		2
			M2 vol(CO ₂) = $(110 \div 0.005) = 22\ 000$ (cm ³)	correct answer scores (2)	
			OR 110 ÷ M1 correctly evaluated		
	(b)		any two from:		2
			M1 the bung was not replaced quickly after the acid was added (so some carbon dioxide/gas escaped)	allow 'the bung was not on tightly/there was a leak around the bung (so some carbon dioxide/gas escaped)'	
			M2 (some) carbon dioxide/gas dissolved in the water (in the trough or in the acid)	allow 'reacted with the water'	
			M3 sodium carbonate is not pure		

	uesti umbe		Answer	Notes	Marks
13	(a)		potassium / sodium / magnesium / zinc	accept K / Na / Mg / Zn if both name and symbol given, mark name only	1
	(b)		M1 bubbles of gas produced rapidly/quickly	accept any indication that the rate of evolution of bubbles and the disappearance of the solid is in between that of magnesium and zinc	2
			M2 solid disappears quickly		
	(c)	(i)	potassium hydroxide	accept KOH if both name and formula given, mark name only	1
		(ii)	MgO		1
	(d)	(i)	carbon/C <u>and</u> it displaces/replaces zinc/Zn	reject 'displaces zinc oxide / displaces oxygen' accept 'it gains oxygen (from the zinc oxide) / it reduces zinc (oxide)'	1
		(ii)	M1 carbon / C		2
			M2 it removes oxygen from the zinc (oxide) / causes zinc <u>ions</u> to gain electrons / gains oxygen / is oxidised	M2 dep on M1 reject 'displaces oxygen'	

Question number		Answer	Notes	Marks
14 (a)		 M1 (goes darker because) more NO₂ is formed M2 as equilibrium/reaction shifts to left M3 because there are more moles/molecules (of gas) on the left hand side 	allow 'moves backwards/in reverse direction' accept 'fewer moles/molecules on the right hand side' ignore references to Le Chatelier's principle	3
(b)	(i)	 M1 the equilibrium/reaction has shifted to the right / more N₂O₄ has been formed M2 a decrease in temperature shifts the equilibrium in the exothermic direction 	accept 'therefore the (forward) reaction is exothermic' for M2 if M1 has been awarded	2
	(ii)	(yes: because) bond making is exothermic/releases (thermal/heat) energy		1

Question number	Answer	Notes	Marks
15 (a)	$3Mg + N_2 \rightarrow Mg_3N_2$		2
	M1 formula for magnesium nitride correct		
	M2 rest of equation correct	M2 dep on M1	
(b) (i)	M1 (damp) red litmus (paper)	reject 'blue litmus' for both M1 and M2	2
	M2 turns blue	accept any suitable indicator with correct colour change, eg phenolphthalein turns red/pink	
	OR		
	M1 mix with hydrogen chloride/HCl	reject 'hydrochloric acid' / 'HCI(aq)' but accept 'fumes from conc. hydrochloric	
	M2 white solid/smoke forms	acid	
		ignore 'fumes'	

(b) (ii)	M1 $M_{\rm r}$ of lithium nitride = 35		2
	M2 (1.40 ÷ 35 =) 0.04(0) (mol)	correct answer scores (2)	
(iii)	M2 from (b)(ii) x 3 / 0.04(0) x 3 = 0.12 (mol)		1
(iv)	Using answer to b(iii)		3
	M1 answer to (b)(iii) ÷ 2 / 0.12 ÷ 2 = 0.06(0) (mol)		
	M2 answer to M1 ÷ 0.500 / 0.06(0) ÷ 0.500		
	M3 0.12 dm ³ / 120 cm ³		
	Using answer to b(ii)		
	M1 answer to (b)(ii) ÷ 2 / 0.04(0) ÷ 2 = 0.02(0) (mol)		
	M2 answer to M1 ÷ 0.500 / 0.02(0) ÷ 0.500		
	M3 0.04 dm ³ / 40 cm ³		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL