Ques	on Scheme	Marks	AOs
1	Use Impulse-momentum principle	M1	2.1
	$2\mathbf{i} - \mathbf{j} = 0.5\mathbf{v} - 0.5(4\mathbf{i} + \mathbf{j})$	A1	1.1b
	$\frac{1}{2}\mathbf{v} = 4\mathbf{i} \frac{1}{2}\mathbf{j} = \mathbf{j}, \mathbf{v} 8\mathbf{i} \mathbf{j} (\mathbf{m} \ \mathbf{s}^{-1})$	A1	1.1b
	Use of KE = $\frac{1}{2}m \mathbf{v} ^2 - \frac{1}{2}m \mathbf{u} ^2$	M1	2.1
	$=\frac{1}{2} \times 0.5 \times \left\{ (64+1) - (16+1) \right\}$	A1	1.1b
	$=\frac{1}{4} \times 48 = 12$ (J) *	A1*	1.1b
		(6)	
		(6 1	marks)
Note			
M1:	Difference of terms & dimensionally correct		
A1:	Correct unsimplified equation		
A1:	200		
M1:	Must be a difference of two terms		
	Must be dimensionally correct		

Paper 3C/4C: Further Mechanics 1 Mark Scheme

A1: Correct unsimplified equation

A1*: Complete justification of given answer

Question	Scheme	Marks	AOs
2(a)	$R = 5g\cos\alpha \left(=5g \times \frac{4\sqrt{3}}{7} = 48.497\right)$	M1	3.4
	Force due to friction = $\mu \times 5g \cos \alpha$	M1	3.4
	Work-Energy equation	M1	3.4
	$\frac{1}{2} \times 5 \times 64 = 5 \times 9.8 \times 14 \sin \alpha + 14 \mu R$	A1	1.1b
	$\mu = 0.0913 \text{ or } 0.091$	A1	1.1b
		(5)	
(b)	Appropriate refinement	B1	3.5c
		(1)	
		(6 n	narks)

Notes:

(a)

- M1: Condone sin/cos confusion
- M1: Use of $\mu \times$ their R
- M1: Must be using work-energy. Requires all terms Condone sin/cos confusion, sign errors and their *R*
- **A1:** Correct in θ and μR
- A1: Accept 0.0913 or 0.091

(b)

- **B1:** e.g.
 - do not model the parcel as a particle and therefore take air resistance into account - take into account the dimensions/uniformity of the parcel

Questio	n Scheme	Marks	AOs		
3(a)	Use NEL to find the speed of particle after the first impact = $eu = \frac{3}{4}u\frac{\pi}{2}$	B1	3.4		
	Impulse = $\lambda mu = mv - mu = \pm \left[\frac{3}{4}mu - (-mu)\right]$	M1	3.1b		
	$\lambda = \frac{7}{4}$	A1	1.1b		
		(3)			
(b)	Use NEL to find the speed of the particle after the second impact = $\frac{3}{4} \times \frac{3}{4}u = \frac{9}{16}u$	B1	3.4		
	Use of $s = vt$ to find total time	M1	3.1b		
	$7 = \frac{2}{u} + \frac{4}{\frac{3}{4}u} + \frac{2}{\frac{9}{16}u} \left(= \frac{2}{u} + \frac{16}{3u} + \frac{32}{9u} \right)$	A1	1.1b		
	Solve for <i>u</i> : $63u = 18 + 48 + 32$	M1	1.1b		
	$u = \frac{98}{63} = \frac{14}{9} (= 1.5)$	A1	1.1b		
		(5)			
			narks)		
Notes:					
M1: M A1: ca	sing Newton's experimental law as a model to find the speed after the fi ust be a difference of two terms, taking account of the change in direction		on		
M1: No A1: Ut	Using NEL as a model to find the speed after the second impact Needs to be used for at least one stage of the journey Ur equivalent Solve their linear equation for <i>u</i>				
	1		Accept 1.56 or better		

Question	Scheme	Marks	AOs
4(a)	Complete strategy to find the kinetic energy after the second impact	M1	3.1b
	Parallel to AB after collision: $u\cos 60^{\circ}$	M1	3.1b
	Perpendicular to <i>AB</i> after collision: $\frac{1}{\sqrt{3}}u\sin 60^\circ$	M1	3.4
	Components of velocity after first impact: $\frac{u}{2}$, $\frac{u}{2}$	A1	1.1b
	Parallel to <i>BC</i> after collision: $\frac{u}{2} \left(u \times \frac{1}{\sqrt{3}} \sin 60^{\circ} \right)$	M1	3.1b
	Perpendicular to <i>BC</i> after collision: $\sqrt{\frac{2}{5}} \times \frac{u}{2} \left(= \frac{1}{\sqrt{10}} u \right)$ $\left(\sqrt{\frac{2}{5}} \times u \cos 60^{\circ} \right)$	M1	3.4
	Components of velocity after second impact: $\frac{u}{2}$, $\frac{u}{\sqrt{10}}$	A1	1.1b
	Final KE = $\frac{1}{2}m\left(\frac{u^2}{4} + \frac{u^2}{10}\right) \left(=\frac{mu^2}{2} \times \frac{7}{20}\right)$		
	Fraction of initial KE = $\frac{\frac{mu^2}{2} \times \frac{7}{20}}{\frac{mu^2}{2}} = \frac{7}{20} = 35\%$ *	A1*	2.2a
		(8)	
(b)	The answer is too large - rough surface means resistance so final speed will be lower	B1	3.5a
		(1)	
		(9 ו	marks)
Notes:			
M1:UseA1:BotM1:UseM1:UseA1:BotM1:Cor	Use of CLM parallel to the wall. Condone sin/cos confusion Use NEL as a model to find the speed perpendicular to the wall. Condone sin/cos confusion Both components correct with trig substituted (seen or implied) Use of CLM parallel to the wall. Condone sin/cos confusion Use NEL as a model to find the speed perpendicular to the wall. Condone sin/cos confusion Both components correct with trig substituted (seen or implied) Correct expression for total KE using their components after 2nd collision Obtain given answer with sufficient working to justify it		
(b) B1: Clea	ar explanation of how the modelling assumption has affected the outcome		

Ques	tion	Scheme	Marks	AOs
5(a	ı)	Use of $P = Fv$: $F = \frac{12000}{20}$	B1	3.3
		Equation of motion: $F - (200 + 2v) = 600a$	M1	3.4
		600 - 240 = 600a	A1ft	1.1b
		$360 = 600a, a = 0.6 \text{ (m s}^{-2}\text{)}$	Al	1.1b
			(4)	
(b))	Equation of motion:	M1	3.3
		12000 (200 2) (200 1 0 (20 0 0 5	A1	1.1b
		$\frac{12000}{w} - (200 + 2w) - 600g\sin\theta = -600 \times 0.05$	A1	1.1b
		3 term quadratic and solve: $2w^2 + 590w - 12000 = 0$	M1	1.1b
		$w = \frac{-590 + \sqrt{590^2 + 96000}}{4} 19.1 (\text{m s}^{-1})$	A1	1.1b
			(5)	
			(9)	marks)
Notes	5:			
(a) B1: M1: A1ft: A1:	Use Mus	or equivalent the model to form the equation of motion t include all terms .Condone sign errors ect for their F		
(b) M1: A1:	All t All c	the model to form the equation of motion erms needed. Condone sign errors and sin/cos confusion correct A1A1		
M1:	One error A1A0 Dependent on the preceding M1. Use the equation of motion to form a 3-term quadratic in w only			
A1:	Acce	ept 19. Do not accept more than 3 s.f.		

Question	Scheme	Marks	AOs
6(a)	3j vi A(2m) 3i+3j B(3m) -5i+2j		
	Overall strategy to find \mathbf{V}_A	M1	3.1a
	Velocity of A perpendicular to loc after collision = $3j$ (m s ⁻¹)	B1	3.4
	CLM parallel to loc	M1	3.1a
	$2m \times 3 - 3m \times 5 = 3mw - 2mv$ (-9 = 3w-2v)	A1	1.1b
	Correct use of impact law	M1	3.1a
	$v + w = \frac{1}{4}(3+5) (=2)$	A1	1.1b
	Solve for w 3w-2v = -9 2v+2w = 4		
	$\mathbf{v}_B = -\mathbf{i} + 2\mathbf{j} \ (\mathrm{m \ s}^{-1}),$	Alft	1.1b
(•)		(7)	
(b)	$\cos\theta = \frac{(-5\mathbf{i}+2\mathbf{j})\cdot(-\mathbf{i}+2\mathbf{j})}{\sqrt{29}\sqrt{5}}$	M1	3.1a
	$\theta = 41.63^{\circ} = 42^{\circ}$ (nearest degree)	A1	1.1b
	Alternative method: $\tan^{-1} 2 - \tan^{-1} \frac{2}{5} = 41.63^{\circ} = 42^{\circ}$		
	(nearest degree)		
		(2)	
Notes:		(9)	marks)
(a) M1: Corr B1: Use M1: Use A1: Corr M1: Mus A1: Corr A1: Corr A1: Corr A1: Corr A1: Corr	rect overall strategy to form sufficient equations and solve for \mathbf{v}_A the model to find the component of \mathbf{v}_A perpendicular to the line of CLM to form equation in v and w . Need all 4 terms, dimensionally rect unsimplified st be used the right way round rect unsimplified orrect. Follow their 2j		
(b) M1: Con A1: cao	nplete method for finding the required angle. Follow their v_B		

Question	Scheme	Marks	AOs
7(a)	In equilibrium \Rightarrow no resultant vertical force	M1	2.1
	$\frac{3mgx}{a} = mg$	A1	1.1b
	$x = \frac{a}{3}$, $d = \frac{4}{3}a$ *	A1*	2.2a
		(3)	
(b)	Equation of motion:	M1	3.1a
	$\frac{3mga}{a} - mg = m\ddot{x}$	A1	1.1b
	$\ddot{x} = 2g$	Al	1.1b
		(3)	
(c)	Max speed at equilibrium position	B1	3.1a
	Work energy & use of EPE = $\frac{\lambda x^2}{2a}$	M1	3.1a
	$\frac{3mga^2}{2a} = \frac{3mg\left(\frac{a}{3}\right)^2}{2a} + \frac{1}{2}mv^2 + mg\frac{2a}{3}$	A1 A1	1.1b 1.1b
	$\frac{1}{2}v^{2} = ga\left(\frac{3}{2} - \frac{1}{6} - \frac{2}{3}\right) = \frac{2}{3}ga, \qquad v = \sqrt{\frac{4ga}{3}}$	A1	1.1b
		(5)	
(d)	At max ht. $KE = 0$. EPE lost = GPE gained	M1	3.1a
	$\frac{3mga^2}{2a} = mgh$	A1	1.1b
	$OB = \frac{a}{2}$	A1	1.1b
		(3)	
	1	(14 r	narks)

Ques	tion 7 notes:
(a)	
M1:	Use $T = \frac{\lambda x}{a}$ to form equation for equilibrium
A1:	Correct unsimplified equation
A1*:	Requires sufficient working to justify given answer
	plus a 'statement' that the required result has been achieved
(b)	
M1:	Use $T = \frac{\lambda x}{a}$ to form equation of motion
	Need all 3 terms. Condone sign errors
A1:	Correct unsimplified equation
A1:	cao
(c)	
B1:	Seen or implied
M1:	Form work-energy equation. All 4 terms needed
	Condone sign errors
A1:	Correct unsimplified equation A1A1
	One error in the equation A1A0
A1:	сао
(d)	
M1:	Form energy equation
A1:	Correct unsimplified equation
A1:	cao

Question	Scheme	Marks	AOs
8(a)	$\xrightarrow{2u}$ \overleftarrow{u}		
	$ \begin{pmatrix} P \\ 2m \end{pmatrix} \qquad \qquad$		
	$\langle w \rangle$		
	Complete overall strategy to find v	M1	3.1a
	Use of CLM	M1	3.1a
	$2m \times 2u - 5m \times u = 5m \times v - 2m \times w , (-u = 5v - 2w)$	A1	1.1b
	Use of Impact law:	M1	3.1a
	v + w = e(2u + u)	A1	1.1b
	Solve for v: $ \begin{array}{rcl} -u &= 5v - 2w \\ 6eu &= 2v + 2w \end{array} $		
	$7v = u(6e-1) \left(v = \frac{u}{7}(6e-1)\right)$	A1	1.1b
	Direction of Q reversed: $v > 0$	M1	3.4
	$\Rightarrow 1 \ge e > \frac{1}{6}$	A1	1.1b
		(8)	
(b)	$e = \frac{1}{3} \implies v = \frac{u}{7}, w = \frac{6u}{7}$	B1	2.1
	Equation for KE lost	M1	2.1
	$\frac{1}{2} \times 2m \left(4u^2 - \frac{36u^2}{49} \right) + \frac{1}{2} \times 5m \left(u^2 - \frac{u^2}{49} \right)$	A1	1.1b
	2 (m 49) 2 (m 49)	A1	1.1b
	$\frac{1}{2}mu^2\left(8-\frac{72}{49}+5-\frac{5}{49}\right) = \frac{40mu^2}{7} *$	A1*	2.2a
		(5)	
(c)	Increase $e \Rightarrow$ more elastic \Rightarrow less energy lost	B1	2.2a
		(1)	
		(14	marks)

Ques	tion 8 notes:
(a)	
M1:	Complete strategy to form sufficient equations in v and w and solve for v
M1:	Use CLM to form equation in v and w
	Needs all 4 terms & dimensionally correct
A1:	Correct unsimplified equation
M1:	Use NEL as a model to form a second equation in v and w. Must be used the right way round
A1:	Correct unsimplified equation
A1:	for v or 7v correct
M1:	Use the model to form a correct inequality for their v
A1:	Both limits required
(b)	
B1:	Or equivalent statements
M1:	Terms of correct structure combined correctly
A1:	Fully correct unsimplified A1A1
	One error on unsimplified expression A1A0
A1*:	cso. plus a 'statement' that the required result has been achieved
(c)	
B1:	"less energy lost" or equivalent