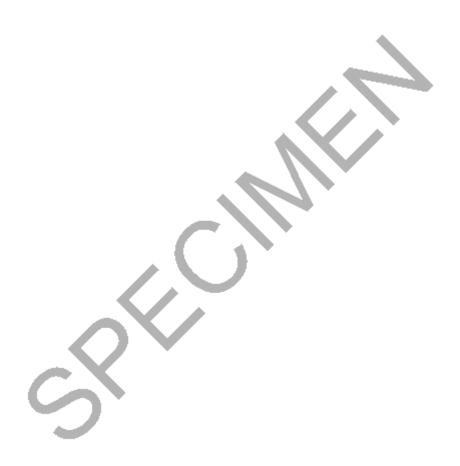


OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary GCE


CHEMISTRY B (SALTERS)

F331 MS

Unit F331: Chemistry for Life

Specimen Mark Scheme

The maximum mark for this paper is 60.

Question Number	Answer				
1(a)(i)	53; 78; 53 respectively				
(ii)	Same atomic no./protons (1); different mass no./ neutrons (1)				
(iii)	+2; low/small (1); -1; aluminium/lead (1) (one mark for each column)				
(iv)	average/mean of isotopes (1)				
1(b)(i)	use small doses (1); therefore limited exposure (1)				
(ii)	10,000 to 500 = 5 half-lives (1); 5 x 8days = 40 days (1)				
1(c)	most of atom empty space/very low density electrons allowing particles to pass undeflected(1); positive protons in nucleus (1) deflect α-particles a lot(1) AW				
	Total	[13]			
2(a)	exothermic	[1]			
2(b)	$CaO(s) + H_2O(I) \rightarrow Ca(OH)_2(aq)$ correct equation(1); state symbols(1)				
2(c)	Energy transferred = 250 x 4.2 x 50 (52,500J)(1); moles CaO = 10/56(0.179)(1);				
	energy per mole = 52500/0.179(293.3kJ)(1); 290 (sig fig mark)(1) allow ecf's	[4]			
2(d)(i)	hard to prevent calcium hydroxide dissolving as it is formed				
(ii)	energy change is independent of route (AW) (1); $\Delta H = \Delta H_1 - \Delta H_2$ (1)				
2(e)	Mg in same group(1); therefore would expect similar reactivity of elements/compounds(1)	[2]			
	Total	[12]			
3(a)	CO – partial/incomplete combustion(1); SO _x – combustion of sulfur impurities/atoms in fuel(1);				
	hydrocarbons – unburnt fuel(1);	[3]			
(b)	branched; cycloalkane; straight; arene; four correct 2 marks; 2/3 correct 1 mark	[1]			

Question Number	Answer				
(c)	Any five from the following:				
	Reactants <i>adsorb</i> on catalyst surface (1) <i>: must be spelled correctly</i> Bonds in reactants weaken and break (1) New/product bonds form (1)				
	Products diffuse away from surface (1)				
	coke bonds to surface (1) more strongly/irreversibly/coats or blocks surface(1)				
(d)(i)	one of: renewable; non-toxic; biodegradable; lower emissions				
(ii)	entropy increases(1); more ways of arranging/more disorder when mixed (1); than when separate(1);				
(iii)	oxygenates				
(iv)	¹ ⁄ ₂ N :				
	lone pairs(1); six bonding electrons(1); triple bond (1); high bond enthalpy/very strong (1);	[4]			
	Total	[19]			
4(a)(i)	1. F (1) and 2. E (1) respectively	[2]			
(ii)	Lines in exactly the same position (1);	[1]			
(b)(i)	(H ₂ S) lone pair (two dots) (1); (NH ₃) lone pair (1); OCS (two dots /two crosses) (1)				
(ii)	H₂S (bent); NH₃ (trigonal pyramid); OCS (linear) (one mark each) (3)	[3]			
(iii)	wedge: bond sticking out of paper dotted, behind paper (1)	[1]			
(c) (i)	accelerated by an electric field/charged plates (1) time depends on mass (1)				
		[2]			

Question Number	Answer						
(ii)	Peak at 720(1); must be sixty carbon atoms (12 x 60 = 720) (1);						
(iii)	property	diamond	graphite	C ₆₀	supports simple molecular model		
	density/g cm ⁻³	3.52	1.9–2.3	1.69			
	hardness scale (hardest 10 – softest 1)	10	1–2	1–2			
	melting point/°C	3550	3652–3697	sublimes around 800	√		
	solubility	insoluble	insoluble	soluble in organic solvents	√	[2]	
		•	•	•			
					Total	[16]	
Paper Total							