

GCE

Physics A

Advanced Subsidiary GCE

Unit G482: Electrons, Waves and Photons

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

Que	stion		Expected Answers	М	Additional Guidance
1	а		use of R = ρ I/A = 2.4 x 12 x 10 ⁻³ /9.0 x 10 ⁻⁶ = 3.2 x 10 ³ (Ω)	C1 M1 A0	
	b		$V^2 = PR$ = 0.125 x 3.2 x 10 ³ V = 20(V)	C1 M1 A0	allow V = $\sqrt{(0.125 \times 3.2 \times 10^3)}$ allow substituting V = 20 to prove P = 0.125 W
	С	i	adding resistors in series and then in parallel to show that total resistance is $3.2~k\Omega$	B1 B1	do not allow any reference to values of V or P, etc in answer
		ii	p.d across each resistor is 20 V so power dissipated is 0.125 W	B1 B1	accept P = 40 ² /3.2 k = 0.50 W so P per resistor = 0.50/4 = 0.125 W do not accept P _{total} = 0.50 W without proof – scores zero
	d	i	using $R_X = \rho I/A$; $A \rightarrow 4A$ and $I \rightarrow 2I$ $R_Y = \rho 2I/4A = \rho I/2A = R_X/2$	M1 A1	accept figures 24 x 10^{-3} m and 36 x 10^{-6} m ² to give 1.6 x 10^{3} Ω
		ii	same current in X and Y (as in series) power dissipated is I^2R or IV where $V_X = 2V_Y$ so X has larger P (dissipation)	B1 M1 A1	allow $P = V^2/R$; $V_X = 2V_Y$ etc. allow 1 mark only for using $P = V^2/R$ or IV and V is larger across X (i.e. not quantitative) so X has larger P
			Total question 1	13	

Question			Expected Answers M		Additional Guidance
2	а	i	ions	B1	
		ii	positive ions	B1	allow positive charges / cations
		iii	electrons	B1	
	b	i	the battery has an internal resistance/AW	B1	accept connecting leads have resistance
			some of the emf is across the (internal) resistance (leaving a	B1	accept V = E - Ir or 'lost volts'/p.d. across r
			smaller p.d. across motor)		
		ii	use E = V + Ir	C1	accept reverse solution, 0.10 $\Omega \rightarrow 8 \text{ V} \rightarrow 12 \text{ V}$
			giving 12 = 8 + 40r	M1	substitution and or
			r = (12 - 8)/40 or $4/40$	M1	solution showing working
			= 0.10 Ω	A0	
		iii	$Q = It = 40 \times 1.2$	C1	
			I= 48 (C)	A1	
	С	i	The current heats the filament	B1	no mention of temperature increase or heating
			The resistance/resistivity (of the metal filament) increases (with		scores zero
			temperature).	B1	
		ii	4.5 to 8 A in each (parallel) arm or 9 to 16 A for both together	B1	no mark if fuse value outside range
			needs to be great enough to cover initial surge/current or use	B1	
			antisurge fuses		
		iii	e.g. the starter motor draws 40 A so would need a bigger fuse	B1	accept headlamp circuit damaged before fuse
			than headlamp circuit so need different fuses for different		blows if 40 A fuse only used or fuse blows in
			situations or if battery used for starter motor with lights on will		starter circuit if 10 A used, etc.
			need too large a fuse – damage occurs before fuse blows/AW		
			Total question 2	15	

Q	Question		Expected Answers	M	Additional Guidance
3			•		
	а	i	V J C ⁻¹	B1	4 correct 3 marks;
			$R V A^{-1}$	B1	2 correct 2 marks
			P J s ⁻¹	B1	1 correct 1 mark
			I C s ⁻¹ .		
	b	i	using $V_{out} = R_2/(R_1 + R_2) V_{in}$: alt: 2.4 = 1 x 560	C1	
			$V_{out} = 3.6 \text{ V}$ so I = 4.3 mA		accept $R_2 = (3.6/2.4) \times 560$
			$3.6 = R_2/(560 + R_2) 6$ $3.6 = I R_2$	C1	or $.2.4 = 560/(560 + R_2) 6$
			$R_2 = 840 (\Omega)$	A1	·
		ii	$I = 4.3 \times 10^{-3} (A)$	B1	accept 4.3 m(A) or 3/700 (A)
					ecf (b)(i) i.e. $I = 6/(560 + R_2)$
	С	i	20 ± 2 (°C)	B1	
		ii	R _{Th} will fall/ resistance will fall	B1	
			giving greater share of supply V across fixed R/AW	B1	accept explanation in terms of potential divider
					equation or current increases or current same
					in both resistors/resistors in series
			causing the voltage across (fixed) R/voltmeter reading to rise	B1	
		iii	ΔR is large for small ΔT at low temperatures/AW in terms of	M2	accept sensitivity greater at low temperature
			gradient		or vice versa or ΔR is small for small ΔT at
					high temperatures scores 1 out of 2
			so thermistor is better in circuit to control low temp, refrigerator	A1	
			Total question 3	14	

Q	uesti	on	Expected Answers	M	Additional Guidance
4					
	а		same frequency / period	B1	accept wavelength / sinusoidal /AW
			different amplitude / phase	B1	accept + sine and – sine for 2 marks
	b		because the waves have a constant phase relationship or	M1	accept same phase relationship for 1 mark only
			are <u>continuous</u> and have the <u>same</u> f/period/λ		
			they are coherent	A1	
	С		use of 3 ms as period	C1	
			$f = 1/3.0 \times 10^{-3} = 330 \text{ (Hz)}$	A1	
			using $v = f\lambda$ 340 = 330 λ	C1	ecf for f possible e.g. λ = 1020 (m)
			$\lambda = 1.0(2) \text{ (m)}$	A1	accept 1.03 (m) no SF error here
	d	i	0	B1	
		ii	1.0 (µm)	B1	look for SF error i.e. zero for 1 (µm)
	е	i	Intensity α (amplitude) ²	C1	allow I α A ²
			so ratio is $(3/2)^2 = 9/4$ (giving 2.25 I)	A1	
		ii	resultant $A = A_S + A_T = (\pm) 1$	C1	ecf from (d)(ii)
			so ratio is $(1/2)^2$ giving 0.25 I	A1	
	f	i	phase shift of π or 180° required or movement of $\lambda/2$	B1	ecf from (c); accept (2n + 1)/2 λ
			1.02/2 = 0.51 (m)	B1	accept 0.50 m
		ii	intensity increases	B1	accept quantitative answers, i.e. from 0.25 I to
			to the maximum value	B1	6.25 I
			Total question 4	18	

G482 Mark Scheme January 2011

(Question		Expected Answers	М	Additional Guidance
5					
	а	i	(sum of/total) current into a junction equals the (sum of/total) current out conservation of charge	B1 B1	total vector sum of currents is zero
		ii	(sum of) e.m.f.s = (sum /total of) p.d.s/sum of voltages in/around a (closed) loop (in a circuit) energy is conserved	B1 B1	
	b		a photon is absorbed by an electron (in a metal surface); causing electron to be emitted (from surface).	B1 B1	not hits
			Energy is conserved (in the interaction).	B1	QWC mark
			Only photons with energy/frequency above the work function energy/threshold frequency will cause emission	B1	3 marks from 6 marking points
			Reference to Einstein's photoelectric energy equation (energy of photon) = (work function of metal) + (maximum		in symbols only scores 1 mark out of 2, i.e. selects from formula sheet
			possible kinetic energy of emitted electron) work function energy is the minimum energy to release an	B2	
			electron from the surface	B1	
			Number of electrons emitted also depends on light intensity	B1	
			Emission is instantaneous	B1	
			Total question 5	10	

Q	uesti	on	Expected Answers	M	Additional Guidance
6					
	а		an eV is the <u>energy</u> acquired by an electron accelerated/moves through a p.d. of 1 V	B1	
			$1 \text{ eV} = 1.6 \text{ x } 10^{-19} \text{ J}$	B1	
	b	i	300 (eV) 4.8 x 10 ⁻¹⁷ (J)	B1 B1	1 mark if write correct answers on wrong lines ecf for (first answer) x 1.6 x 10 ⁻¹⁹ e.g. 7.68 x 10 ⁻³⁶ using 4.8 x 10 ⁻¹⁷
		ii	$1/2$ mv ² = 4.8 x 10 ⁻¹⁷ \Rightarrow v ² = 9.6 x 10 ⁻¹⁷ / 9.1 x 10 ⁻³¹ (= 1.06 x 10 ¹⁴) v = 1.03 x 10 ⁷ (m s ⁻¹)	M1 A1	allow 1 mark only for $v^2 = 2 \times b(i)/9.1 \times 10^{-31}$ if b(i) incorrect allow 1.0 x 10 ⁷ , 1 x 10 ⁷ is not acceptable
	С	i	Electrons are observed to behave as waves/show wavelike properties where the electron wavelength depends on its speed/momentum	B1 B1	accept by being diffracted (by a crystal lattice)/AW accept de Broglie eqn with m,v or p defined
		ii	$\lambda = h/mv = 6.63 \times 10^{-34}/(9.1 \times 10^{-31} \times 1.03 \times 10^{7})$ = 7.1 x 10 ⁻¹¹ (m)	C1 A1	allow 1 mark for 3.9 or 4.0×10^{-14} (m) caused by subs m _p for m allow 7.3×10^{-11} (m)
			Total question 6	10	

Qı	uesti	on	Expected Answers	М	Additional Guidance
7			·		
	а	i	a quantum/lump/unit/packet/particle of (e-m) energy/light	B1	
		ii	all wavelengths/frequencies are present (in the radiation)/AW	B1	accept colours
	b	i	1 infra red	B1	
			2 the bulb of the lamp is hot	B1	
		ii	5/100 x 24 = 1.2 W	C1	allow 2 marks if forgotten 5% and obtain
			$n = 1.2/4 \times 10^{-19}$	C1	6 x 10 ¹⁹
			$= 3.0 \times 10^{18}$	A1	allow 3 x 10 ¹⁸ – no SF as estimate
	С	i	7° violet/blue	B1	not purple
			12° red	B1	
		ii	$d = 1/3 \times 10^5 = 3.3 \times 10^{-6} \text{ m}$	B1	with d = 3×10^{-6} m θ = 10.4° give 2 out of 3
			$\sin \theta = \lambda / d = 5.4 \times 10^{-7} / 3.3 \times 10^{-6} (= 0.162)$	M1	ecf incorrect value of d substituted correctly,
			$\theta = 9.3^{\circ} \text{ or } 9.4^{\circ} \text{ do not accept } 9^{\circ}$	A1	scores 1 out of 3
			Total question 7	12	
Qı	Question		Expected Answers	M	Additional Guidance
8					
	а	i	vertical arrow upwards from ground state to zero level or above	B1	
		ii	21.8 x 10 ⁻¹⁹ (J)	B1	no ecf from (i); ignore sign
	b	i	$E = hc/\lambda = 6.63 \times 10^{-34} \times 3.0 \times 10^{8}/4.9 \times 10^{-7}$	M1	accept use of 6.6 instead of 6.63 which can
			$= 4.06 \times 10^{-19} (J)$ or $4.1 \times 10^{-19} (J)$	A1	round down answer to 4.0(4)
		ii	vertical arrow downwards between n = 4 to n = 2 levels	B1	
	С		some photons will be absorbed	B1	not hits
			hydrogen atoms become excited	B1	allow electron moves up energy levels
			(excited) hydrogen atoms re-emit photons	B1	
			the photon energy is equal to the transition $n = 1$ to $n = 3$	B2	NB full marks = lines 1 + 4 or 1 + 2 + 3
			Total question 8	8	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office Telephone: 01223 5

Telephone: 01223 552552 Facsimile: 01223 552553

