$\begin{aligned} & \mathbf{Q} \\ & \mathbf{1} \end{aligned}$		mark		Sub
(i)	$\begin{aligned} & 16=0.4 v \\ & \text { so } 40 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use of $I=\Delta m v$	2
(ii)	PCLM $\uparrow+\mathrm{ve}$ $0.4 \times 32-0.6 u=0.4 v_{\mathrm{P}}+0.6 \times 4$ NEL $\uparrow+\mathrm{ve}$ $\frac{4-v_{\mathrm{p}}}{-u-32}=-0.1$ Solving $u=18$ $v_{\mathrm{P}}=-1$ so $1 \mathrm{~m} \mathrm{~s}^{-1}$ downwards	M1 A1 M1 A1 E1 A1 A1	Use of PCLM Any form Use of NEL. Allow sign errors. Any form Must be obtained from a pair of correct equations. If given $u=18$ used then $v_{\mathrm{P}}=-$ 1 must be obtained from 1 equation and both values tested in the second equation cao. Accept use of given $u=18$ cao	
$\begin{aligned} & \hline \text { (iii } \\ & \text {) } \end{aligned}$	Considering the momenta involved $0.5\binom{-3.6}{5.2}=0.2\binom{3}{4}+0.3 \mathbf{v}_{\mathrm{D}}$ $\mathbf{v}_{\mathrm{D}}=\binom{-8}{6}$ so $a=-8$ and $b=6$ Gradients of the lines are $\frac{4}{3}$ and $\frac{6}{-8}$ Since $\frac{4}{3} \times \frac{6}{-8}=-1$, they are at 90°	M1 B1 B1 A1 A1 A1 M1 E1	PCLM applied. May be implied. LHS momentum of C correct Complete equation. Accept sign error. cao cao Any method for the angle Clearly shown	8
				17

\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{|l}
\hline \mathbf{Q} \\
2 \\
\hline
\end{array}
\] \& \& mark \& \& Sub \\
\hline (i) \& \begin{tabular}{l}
Moments about C
\[
240 \times 2=3 R_{\mathrm{D}}
\] \\
\(R_{\mathrm{D}}=160\) so 160 N Resolve vertically
\[
\begin{aligned}
\& R_{\mathrm{C}}+R_{\mathrm{D}}=240 \\
\& R_{\mathrm{C}}=80 \text { so } 80 \mathrm{~N}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
F1
\end{tabular} \& \begin{tabular}{l}
Moments about C or equivalent. Allow 1 force omitted \\
Resolve vertically or moments about D or equivalent. \\
All forces present. \\
FT from their \(R_{\mathrm{D}}\) only
\end{tabular} \& 4 \\
\hline \[
\begin{array}{|l|}
\hline \text { (ii) } \\
\text { (A) }
\end{array}
\] \& Moments about D
\[
240 \times 1=4 T \sin 40
\]
\[
T=93.343 \ldots \text { so } 93.3 \text { N (3 s. f.) }
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 }
\end{aligned}
\] \& Moments about D or equivalent Attempt at resolution for RHS RHS correct \& 4 \\
\hline \begin{tabular}{l}
(ii) \\
(B)
\end{tabular} \& In equilibrium so horizontal force needed to balance cpt of \(T\). This must be friction and cannot be at C . \& \& Need reference to horizontal force that must come from friction at D. \& \\
\hline \[
\begin{array}{|l|}
\hline \text { (iii } \\
\text {) } \\
\text { (A) }
\end{array}
\] \& \begin{tabular}{l}
Moments about B
\[
\begin{aligned}
\& 3 \times 240 \times \cos 30=6 P \\
\& P=60 \sqrt{3}(103.92 \ldots . .)
\end{aligned}
\] \\
\(P\) inclined at \(30^{\circ}\) to vertical \\
Resolve horizontally. Friction force \(F\)
\[
F=P \sin 30
\] \\
so \(F=30 \sqrt{3}(51.961 \ldots)\)
\end{tabular} \& M1
E1
B1

M1

A1 \& | All terms present, no extras. Any resolution required attempted. |
| :--- |
| Accept decimal equivalent |
| Seen or equivalent or implied in (iii) (A) or (B). |
| Resolve horizontally. Any resolution required attempted |
| Any form | \& \\

\hline
\end{tabular}

$\begin{aligned} & \hline \text { (iii } \\ & \hline \end{aligned}$ (B)	Resolve vertically. Normal reaction R $P \cos 30+R=240$ $\begin{aligned} & \text { Using } F=\mu R \\ & \mu=\frac{30 \sqrt{3}}{240-60 \sqrt{3} \times \frac{\sqrt{3}}{2}} \\ & =\frac{30 \sqrt{3}}{240-90}=\frac{\sqrt{3}}{5}=0.34641 \text { so } 0.346(3 \\ & \text { s. f.) } \end{aligned}$	M1 A1 M1 A1 A1	Resolve vertically. All terms present.and resolution attempted Substitute their expressions for F and R cao. Any form. Accept 2 s. f. or better	5
				19

$\begin{array}{\|l} \hline \mathbf{Q} \\ 3 \end{array}$		mark		Sub
$\begin{array}{\|l\|} \hline \text { (a) } \\ \text { (i) } \end{array}$	$\begin{aligned} & 80\binom{\bar{x}}{\bar{y}}=48\binom{6}{2}+12\binom{1}{-3}+20\binom{11}{9} \\ & 80\binom{\bar{x}}{\bar{y}}=\binom{520}{240} \end{aligned}$ $\begin{aligned} & \bar{x}=6.5 \\ & \bar{y}=3 \end{aligned}$	M1 B1 B1 E1 A1	Correct method for c.m. Total mass correct One c.m. on RHS correct [If separate components considered, B1 for 2 correct] сао	5
(ii)	Consider x coordinate $520=76 \times 6.4+4 x$ so $x=8.4$	M1 B1 A1	Using additive principle o. e. on x cpts Areas correct. Allow FT from masses from (i) cao	3
$\begin{aligned} & \hline \text { (iii } \\ & \text {) } \end{aligned}$	y coordinate is 1 so we need $240=76 \bar{y}+4 \times 1$ and $\bar{y}=3.10526 \ldots$ so 3.11 (3 s. f.)	$\begin{array}{\|l} \mathrm{B} 1 \\ \text { M1 } \\ \text { A1 } \end{array}$	Position of centre of square cao	3
(b) (i)	$\begin{array}{\|l} \text { Moments about C } \\ 4 R=120 \times 3+120 \times 2 \\ \text { so } 4 R=600 \text { and } R=150 \end{array}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { E1 } \end{array}$	Moments equation. All terms present	2
(ii)	$\begin{aligned} & \mathrm{A} \uparrow \quad 150+T_{\mathrm{AE}} \cos 30=0 \\ & T_{\mathrm{AE}}=-100 \sqrt{3} \operatorname{so} 100 \sqrt{3} \mathrm{~N}(\mathrm{C}) \\ & \mathrm{E} \downarrow \quad 120+T_{\mathrm{AE}} \cos 30+T_{\mathrm{EB}} \cos 30=0 \\ & T_{\mathrm{EB}}=20 \sqrt{3} \text { so } 20 \sqrt{3} \mathrm{~N}(\mathrm{~T}) \end{aligned}$	B1	Equilibrium at a pin-joint Any form. Sign correct. Neglect (C) Equilibrium at E, all terms present Any form. Sign follows working. Neglect (T). T/C consistent with answers	

				6
(iii)	Consider \rightarrow at E, using (ii) gives ED as thrust	E1	Clearly explained. Accept 'thrust' correctly deduced from wrong answers to (ii).	1
			20	

$\begin{array}{\|l} \hline \mathbf{Q} \\ 4 \\ \hline \end{array}$		mark		Sub
(i)	$\frac{0.5 \times 20 \times 8^{2}-0.5 \times 20 \times 5^{2}+510}{6}$ $=150 \mathrm{~W}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Use of $P=\mathrm{WD} / t$ Δ KE. Accept ± 390 soi All correct including signs	4
$\begin{array}{\|l\|} \hline \hline \text { (ii) } \\ \text { (A) } \end{array}$	$\begin{aligned} & 20 g \times \frac{3}{5} x-5 g x \\ & 7 g x(68.6 x) \text { gain } \end{aligned}$	$\begin{array}{\|l} \text { M1 } \\ \text { B1 } \\ \text { A1 } \\ \text { A1 } \end{array}$	Use of $m g h$ on both terms Either term (neglecting signs) $\pm 7 g x$ in any form. cao	4
(B)	11 gx	B1		1
(C)	$0.5 \times 25 \times 4^{2}=7 g x+11 g x=18 g x$ $x=1.13378 \ldots \text { so } 1.13 \mathrm{~m}(3 \mathrm{s.} \mathrm{f.})$	$\begin{array}{\|l} \text { M1 } \\ \text { B1 } \\ \text { A1 } \end{array}$	Use of work-energy equation. Allow 1 RHS term omitted. KE term correct cao. Except follow wrong sign for $7 g x$ only.	
$\begin{array}{\|l} \hline \text { (iii } \\ \text {) } \end{array}$	either $\begin{aligned} & 0.5 \times 35 \times v^{2}-0.5 \times 35 \times 16 \\ & =15 g \times 0.5-11 g \times 0.5-12 g \times 0.5 \\ & v^{2}=13.76 \text { so } v=3.70944 \ldots \\ & \text { so } 3.71 \mathrm{~m} \mathrm{~s}^{-1}(3 \text { s. f. }) \end{aligned}$ or $15 g-T=15 a \quad T-12 g-11 g=20 a$ so $a=-2.24$ $\begin{aligned} & v^{2}=4^{2}+2 \times(-2.24) \times 0.5 \\ & \text { so } 3.71 \mathrm{~m} \mathrm{~s}^{-1}(3 \mathrm{~s} . \text { f. }) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use of work-energy. KE, GPE and WD against friction terms present. Δ GPE correct inc sign (1.5 g J loss) All correct cao N2L in 1 or 2 equations. All terms present cao Use of appropriate (sequence of) uvast cao	4
				16

