Q 1		mark		Sub
(i)	16 = 0.4v so 40 m s ⁻¹	M1 A1	Use of $I = \Delta m v$	2
(ii)	PCLM \uparrow + ve $0.4 \times 32 - 0.6u = 0.4v_{p} + 0.6 \times 4$ NEL \uparrow +ve $\frac{4 - v_{p}}{-u - 32} = -0.1$ Solving u = 18	M1 A1 M1 A1 E1	Use of PCLM Any form Use of NEL. Allow sign errors. Any form Must be obtained from a pair of correct equations. If given $u = 18$ used then $v_P = -1$ must be obtained from 1 equation and both values tested in the second equation	
	$v_{\rm p} = -1$ so 1 m s ⁻¹ downwards	A1 A1	cao. Accept use of given $u = 18$ cao	7
(iii)	Considering the momenta involved $0.5\binom{-3.6}{5.2} = 0.2\binom{3}{4} + 0.3\mathbf{v}_{\mathrm{D}}$ $\mathbf{v}_{\mathrm{D}} = \binom{-8}{6} \text{ so } a = -8 \text{ and } b = 6$ Gradients of the lines are $\frac{4}{3}$ and $\frac{6}{-8}$ Since $\frac{4}{3} \times \frac{6}{-8} = -1$, they are at 90°	M1 B1 A1 A1 A1 M1 E1	PCLM applied. May be implied. LHS momentum of C correct Complete equation. Accept sign error. cao cao Any method for the angle Clearly shown	8
				17

(i)				Dub
	Moments about C $240 \times 2 = 3R_{\rm D}$ $R_{\rm D} = 160$ so 160 N Resolve vertically $R_{\rm D} + R_{\rm D} = 240$	M1 A1 M1	Moments about C or equivalent. Allow 1 force omitted Resolve vertically or moments about D or	
	$R_{\rm c} = 80 \text{ so } 80 \text{ N}$	F1	equivalent. All forces present. FT from thei r $R_{\rm D}$ only	4
(ii) (A)	Moments about D $240 \times 1 = 4T \sin 40$ T = 93.343 so 93.3 N (3 s. f.)	M1 M1 A1 A1	Moments about D or equivalent Attempt at resolution for RHS RHS correct	4
(ii) (B)	In equilibrium so horizontal force needed to balance cpt of T . This must be friction and cannot be at C.		Need reference to horizontal force that must come from friction at D.	1
(iii) (A)	Moments about B $3 \times 240 \times \cos 30 = 6P$ $P = 60\sqrt{3}$ (103.92) <i>P</i> inclined at 30° to vertical Resolve horizontally. Friction force <i>F</i> $F = P \sin 30$ so $F = 30\sqrt{3}$ (51.961)	M1 E1 B1 M1 A1	All terms present, no extras. Any resolution required attempted. Accept decimal equivalent Seen or equivalent or implied in (iii) (A) or (B). Resolve horizontally. Any resolution required attempted Any form	

(iii)				
(B)	Resolve vertically. Normal reaction R			
	$P\cos 30 + R = 240$	M1	Resolve vertically. All terms present.and resolution attempted	
		A1		
	Using $F = \mu R$	M 1		
	$\mu = \frac{30\sqrt{3}}{240 - 60\sqrt{3} \times \frac{\sqrt{3}}{2}}$	A1	Substitute their expressions for <i>F</i> and <i>R</i>	
	$=\frac{30\sqrt{3}}{240-90}=\frac{\sqrt{3}}{5}=0.34641 \text{ so } 0.346 \text{ (3)}$ s. f.)	A1	cao. Any form. Accept 2 s. f. or better	F
				3
				19

Mark Scheme

Q 3		mark		Sub
(a) (i)	$80\left(\frac{\overline{x}}{\overline{y}}\right) = 48\left(\frac{6}{2}\right) + 12\left(\frac{1}{-3}\right) + 20\left(\frac{11}{9}\right)$ $80\left(\frac{\overline{x}}{\overline{y}}\right) = \left(\frac{520}{240}\right)$	M1 B1	Correct method for c.m. Total mass correct	
		B1	One c.m. on RHS correct [If separate components considered, B1 for 2 correct]	
	$\overline{x} = 6.5$ $\overline{y} = 3$	E1 A1	cao	5
(ii)	Consider <i>x</i> coordinate $520 = 76 \times 6.4 + 4x$	M1 B1	Using additive principle o. e. on <i>x</i> cpts Areas correct. Allow FT from masses from (i)	
(:::	so $x = 8.4$	A1	cao	3
)	<i>y</i> coordinate is 1 so we need 240 = $76\overline{y} + 4 \times 1$ and $\overline{y} = 3.10526$ so 3.11 (3 s. f.)	B1 M1 A1	Position of centre of square cao	3
(b) (i)	Moments about C $4R = 120 \times 3 + 120 \times 2$ so $4R = 600$ and $R = 150$	M1 E1	Moments equation. All terms present	2
(ii)	$\begin{array}{c} 150 \text{ N} \\ A \\ 120 \text{ N} \end{array} \begin{array}{c} E \\ T_{\text{EB}} \\ T_{\text{BB}} \\ T_{\text{DB}} \\ T_{\text{DB}} \\ T_{\text{DB}} \\ T_{\text{BC}} \\ T_{\text{BC}} \\ 120 \text{ N} \end{array}$	B1		
	A \uparrow 150 + $T_{AE} \cos 30 = 0$ $T_{AE} = -100\sqrt{3} \text{ so } 100\sqrt{3} \text{ N (C)}$ E \downarrow 120 + $T_{AE} \cos 30 + T_{EB} \cos 30 = 0$ $T_{EB} = 20\sqrt{3} \text{ so } 20\sqrt{3} \text{ N (T)}$	M1 A1 M1 F1 F1	Equilibrium at a pin-joint Any form. Sign correct. Neglect (C) Equilibrium at E, all terms present Any form. Sign follows working. Neglect (T). T/C consistent with answers	

				6
(iii)	Consider \rightarrow at E, using (ii) gives ED as thrust	E1	Clearly explained. Accept 'thrust' correctly deduced from wrong answers to (ii).	1
				20

4762 2006

Q 4		mark		Sub
(i)	$\frac{0.5 \times 20 \times 8^2 - 0.5 \times 20 \times 5^2 + 510}{6}$ = 150 W	M1 B1 A1 A1	Use of $P = WD/t$ \triangle KE. Accept ±390 soi All correct including signs	4
(ii) (A)	$20g \times \frac{3}{5}x - 5gx$ $7gx (68.6x) \text{ gain}$	M1 B1 A1 A1	Use of <i>mgh</i> on both terms Either term (neglecting signs) $\pm 7gx$ in any form. cao	4
(B)	11gx	B1		1
(C)	$0.5 \times 25 \times 4^2 = 7gx + 11gx = 18gx$ x = 1.13378 so 1.13 m (3 s. f.)	M1 B1 A1	Use of work-energy equation. Allow 1 RHS term omitted. KE term correct cao. Except follow wrong sign for 7 <i>gx</i> only.	3
(iii)	either $0.5 \times 35 \times v^2 - 0.5 \times 35 \times 16$ $= 15g \times 0.5 - 11g \times 0.5 - 12g \times 0.5$ $v^2 = 13.76 \text{ so } v = 3.70944$ so 3.71 m s^{-1} (3 s. f.) or 15g - T = 15a $T - 12g - 11g = 20aso a = -2.24v^2 = 4^2 + 2 \times (-2.24) \times 0.5so 3.71 \text{ m s}^{-1} (3 s. f.)$	M1 B1 A1 A1 M1 A1 M1 A1	Use of work-energy. KE, GPE and WD against friction terms present. \triangle GPE correct inc sign (1.5g J loss) All correct cao N2L in 1 or 2 equations. All terms present cao Use of appropriate (sequence of) <i>uvast</i> cao	4