

LEVEL 2 CERTIFICATE FURTHER MATHEMATICS 8360/2

Paper 2 Calculator

Mark scheme

June 2019

Version: 1.0 Final

jun1983602/MS

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2019 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

Μ	Method marks are awarded for a correct method which could lead to a correct answer.
М дер	A method mark dependent on a previous method mark being awarded.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
ft	Follow through marks. Marks awarded following a mistake in an earlier step.
SC	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe	Or equivalent. Accept answers that are equivalent.
	eg, accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between <i>a</i> and <i>b</i> inclusive.
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Q	Answer	Mark	Comments	
	Alternative method 1			
	3a = 4(2a + 3) or $3a = 8a + 12or5a = 4b$	M1	oe equation	
	$(a =) -\frac{12}{5}$ or $-2\frac{2}{5}$ or -2.4	A1		
	(b =) -3	A1ft	ft their a × 1.25 evaluated or $\frac{\text{their 5a}}{4}$ evaluated a ≠ 0 if awarding ft M1 is implied	
	Alternative method 2			
1(a)	3a + 5a = 4(2a + 3) + 4b or $8a = 8a + 12 + 4b$ or $4b = -12$	M1	oe equation	
·(u)	(b =) -3	A1		
	$(a =) -\frac{12}{5}$ or $-2\frac{2}{5}$ or -2.4	A1ft	ft their b × 0.8 evaluated or $\frac{\text{their } 4b}{5}$ evaluated b ≠ 0 if awarding ft M1 is implied	
	Ad	ditional G	auidance	
	Alt 1 a = 2 $b = 2.5$ (5a = 4b is implied)			M1A0A1ft
	$ \begin{pmatrix} 3a \\ 5a \end{pmatrix} = \begin{pmatrix} 8a+12 \\ 4b \end{pmatrix} $			MO
	Accept $\frac{-12}{5}$ or $\frac{12}{-5}$ for $-\frac{12}{5}$ (apply	throughout	ut scheme for values)	
	Only solutions seen with one correct ar	nd the othe	er incorrect (or missing)	2 marks

Q	Answer	Mark	Comments	
	2m + 2 = 1		oe equation or calculation	
	or $2m + 1 = 0$			
	or $\frac{1-2}{2}$	M1		
	or $\begin{pmatrix} 2m+2 & 2m+1\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$			
	$-\frac{1}{2}$ or -0.5	A1		
	Ad	ditional G	auidance	
1(b)	Condone missing brackets in $\begin{pmatrix} 2m+2\\ 0 \end{pmatrix}$	$\binom{2m+1}{1} =$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	
	Allow $\begin{pmatrix} 2m+2 & 2m+1 \\ 2-2 & 2-1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$			
	Mark positively			
	eg error in matrix multiplication but 2m	+ 2 = 1 ar	nd answer –0.5	M1A1
	More than one answer given is A0			
	eg $m + 2 = 1$ and $2m + 1 = 0$ (mar	k positivel	y)	M1
	Answer -1 and -0.5			A0

Q	Answer	Mark	Comments
	$\left(\frac{4+6}{2}, \frac{1+9}{2}\right)$ or (5, 6)	M1	oe eg $\left(4 + \frac{6-4}{2}, 1 + \frac{11-1}{2}\right)$ may be on diagram
2	$\frac{13}{4 - 10} \text{ or } \frac{4}{-6}$ or $\frac{0 - \text{their } 6}{14 - \text{their } 5} \text{ or } \frac{-6}{9}$	M1	oe method for at least one gradient or at least one unsimplified gradient seen eg $\frac{-3-1}{10-4}$ or $\frac{-4}{6}$ or $\frac{\text{their } 6-0}{\text{their } 5-14}$ or $\frac{6}{-9}$ $\frac{6-0}{5-14}$ or $\frac{6}{-9}$ is M1M1
	$\frac{13}{4-10} \text{ or } \frac{4}{-6}$ and $\frac{0-6}{14-5} \text{ or } \frac{-6}{9}$ and shows that the gradients are equal	A1	oe method for both gradients or two unsimplified gradients seen and gradients shown to be equal eg $\frac{4}{-6}$ and $\frac{-6}{9}$ and these are both $-\frac{2}{3}$ SC2 (5, 6) and at least one gradient given $as -\frac{2}{3}$ SC1 at least one gradient given $as -\frac{2}{3}$

Additional Guidance is on the next page

Q	Answer	Mark	Comments			
		ditional C	vidence			
	Ad Mark intention for 1st M1 eg condone	ditional G	luidance	M1		
	$\frac{4}{-6} = -\frac{2}{3}$ and $\frac{-6}{9} = -\frac{2}{3}$			M2A1		
	$\frac{13}{4-10} = -\frac{2}{3}$ and $\frac{0-6}{14-5} = -\frac{2}{3}$			M2A1		
	$\frac{4}{-6} = \frac{-6}{9}$			M2A1		
	$\frac{4}{-6}$ and $\frac{-6}{9}$ and parallel			M2A0		
	$\frac{4}{6}$ is 2nd M0 unless recovered to $-\frac{4}{6}$					
	$\frac{4}{6}$ recovered to $-\frac{4}{6}$ and $\frac{6}{9}$ recovered	uld go on to score full marks				
2 cont	both gradients = $-\frac{2}{3}$ with no method of score the A mark	r unsimplif	ied gradients seen cannot			
	$\frac{4}{-6}x$ or $\frac{-6}{9}x$ do not score 2nd M1 unless recovered					
	Equation of a line does not score 2nd l gradient seen	V1 unless	a method or unsimplified			
	Using the reciprocals of gradients can	score a m	aximum of M1M0A0			
	Allow –0.66 or –0.67 for $-\frac{2}{3}$ and $\frac{2}{-1}$	<mark>⊢</mark> etc				
	Ignore conversion attempt after a correct fraction is seen or method for $\frac{4}{-6}$					
	1 = 4m + c and $-3 = 10m + c$					
	$4 = -6m$ $\frac{4}{-6} = m$ (similar method possib	le for $\frac{-6}{9}$)	(2nd) M1		

Q	Answer	Mark	Comments	
	-		-	
	$a^2 < 0$		B1 for each correct row	
	$-1 < b^3 < 1$ 🗸	B4		
	$\frac{b}{a} < 0$			
	a – b > 0			
3	Ad	ditional G	luidance	
	Two boxes ticked in a row with other 3 rows fully correct			B3
	One row correct, two rows blank, all three boxes ticked in another row			B1
	Only crosses used instead of ticks eg cross in all 4 correct boxes with all o	other boxe	es blank	B4
	Ticks and crosses used – only mark the ticks for that row			
	eg Top row has X X ✓ scores B1 for that row			
	Second row has X ✓ X scores B0 fo	or that row		

Q	Answer	Mark	Comments
	$(y =) \frac{3}{2} x \text{ or } (y =) 1.5x$ or $\frac{3}{2}$ or 1.5	M1	oe eg (y =) $\frac{3x-9}{2}$
	$\frac{x^5 - 17}{10} = \frac{3}{2}$	M1dep	oe implies M2
4	$x^{5} = \frac{3}{2} \times 10 + 17$ or $\sqrt[5]{32}$ or correctly rearranges $\frac{x^{5} - 17}{10} = k$ to the form $x^{5} =$ (k any non-zero value)	M1	oe eg $x^5 = 15 + 17$ or $x^5 = 32$ or $\sqrt[5]{15+17}$ must rearrange to the form $x^5 =$
	2	A1	

Additional Guidance is on the next page

Q	Answer	Mark	Comments		
	Ad	ditional Gu	idance		
	Condone error seen in rearrangement	of 3x – 2y =	9 if gradient is $\frac{3}{2}$		
	May go on to score M3A1				
	$\frac{x^5 - 17}{10} = \frac{3}{2}x$		M1M0M0A0		
	(gradient =) 3		M0M0dep		
	$\frac{x^5 - 17}{10} = 3$				
4	$x^5 = 30 + 17$ (3rd M is not dependent	:)	M1		
cont	2.16		A0		
	$\frac{3}{2}$		M1		
	$\frac{x^5 - 17}{10} = -\frac{2}{3}$		МО		
	$x^5 = -\frac{2}{3} \times 10 + 17$ (3rd M is not dep	endent)	M1		
	1.595 AC				
	Condone answer (2,)				
	2 embedded		M3A0		

Q	Answer	Mark	Comments	
L				
5(a)	a ⁻²		B1 applies an index law or change root to fractional or decimal power correct expression eg $\sqrt[4]{a^{-8}}$ or $(a^{-8})^{\frac{1}{4}}$ or $(a^{8})^{-\frac{1}{4}}$ or $a^{-\frac{8}{4}}$ or $(\frac{1}{a^{\frac{8}{4}}})^{\frac{1}{4}}$ or $\frac{1}{a^2}$ or $a^{\frac{1}{4}} \times a^{-\frac{9}{4}}$ or $a^{\frac{1}{4}} \times \frac{1}{a^{\frac{9}{4}}}$ or $(\frac{1}{a^8})^{\frac{1}{4}}$ or $\sqrt[4]{\frac{1}{a^8}}$ or $(\frac{1}{a^8})^{\frac{1}{4}}$ or $\sqrt[4]{\frac{1}{a^8}}$ or $(a \times a^{-9})^{\frac{1}{4}}$ or $(a \times \frac{1}{a^9})^{\frac{1}{4}}$	
	Ad	ditional G	auidance	
	$a^{\frac{-8}{4}}$ or $a^{\frac{8}{-4}}$			B1
	a^{-2} in working with –2 on answer line			B1
	a^{-2} in working with $\frac{1}{a^2}$ on answer line			B1
	B1 response followed by further work is	s still awar	ded B1	
	Allow 0.25 for $\frac{1}{4}$ etc			
	Allow recovery of missing brackets			

Q	Answer	Mark	Comments	
	32c ² d ² or 32(cd) ²	B3	B2 (numerator =) $64c^{3}d^{6}$ or single term answer with two 32, c^{2} and d^{2} (not in a denor B1 single term answer with 32, c^{2} and d^{2} (not in a denor SC2 factorised correct expr eg 16cd(2cd)	ninator) one of ninator)
	Additional Guidance			
	$2c^{2}d^{2}$ or $32c^{2}d$ or $32c^{2}$ or $\frac{32d^{2}}{c^{3}}$	B2		
5(b)	5(b) $32c^{3}d \text{ or } c^{2} \text{ or } \frac{d^{2}}{c} \text{ or } \frac{c^{2}d}{32} \text{ or } \frac{32}{c^{2}} \text{ etc}$			B1
	$\frac{32c^2d^2}{1}$ or $\frac{32(cd)^2}{1}$		B2	
	Allow denominator of 1 in a B2 or B1 ar	nswer eg	$\frac{32c^2d}{1}$	B2
	Multiplication signs in a correct express	Multiplication signs in a correct expression eg $32 \times c^2 \times d^2$		
	Allow multiplication signs in a B2, SC2 or B1 answer eg $32 \times c^3 \times d$		B1	
	Do not accept 2^5 for 32 eg 2^5c^2d			B1
	If answer line scores B1 or B0 check we up to 2 marks	orking line	s for possible response for	
	$32c^2d^2$ in working with different answer	on answe	rline	B2

Q	Answer	Mark	Comments
6(a)	$A(-\frac{3}{2}, 0)$ and $B(2, 0)$	B2	oe B1 $A(-\frac{3}{2}, 0)$ oe or $B(2, 0)$ SC1 $A(2, 0)$ and $B(-\frac{3}{2}, 0)$ oe
	Ad	ditional G	auidance
	Ignore the diagram		

6(b)	$-\frac{3}{2} < x < 2$ or $2 > x > -\frac{3}{2}$	B1ft	oe correct or ft their values from (a) must be a single inequality in x
------	--	------	---

Additional Guidance is on the next page

Q	Answer	Mark	Comments
	Add	litional Guida	nce
	$-\frac{3}{2} \le x < 2$		B0
	$-\frac{3}{2} > x < 2$		B0
	$-\frac{3}{2} < x$ and $x < 2$		В0
	their (a) $A(-2, 0)$ and $B(\frac{3}{2}, 0)$ (B	0 in (a))	
6(b) cont	(b) $-2 < x < \frac{3}{2}$		B1ft
	their (a) $A(2, 0)$ and $B(-\frac{3}{2}, 0)$	(SC1 in (a))	
	(b) $2 < x < -\frac{3}{2}$		B0ft
	their (a) $A(-3, 0)$ and $B(2, 0)$ (b) $2 < x < -3$	31 in (a))	B0ft
	their (a) $A(4, 0)$ and $B(-2, 0)$ (b) $-2 < x < 4$	B0 in (a))	B1ft
	Only one value in (a) can only score in ((b) for $-\frac{3}{2} < x$	< 2 or 2 > x > $-\frac{3}{2}$

Q	Answer	Mark	Comme	nts	
	Horizontal straight line	B1	mark intention		
	Ad				
	Ignore any attempt at an equation				
	Mark the entire graph on the grid				
7(a)	(a) Ignore any graph not on the grid				
	Line clearly drawn on the x-axis			B1	
	Line does not need to start from the y-axis				
	Ignore any points plotted				

	Straight line with gradient > 0	B1	mark intention	
	Ad	ditional G	lidance	
	Ignore any attempt at an equation			
7(b)	Ignore any graph not on the grid			
	Vertical line		B0	
	gradient B0			
	Ignore any points plotted			

Q	Answer	Mark	Comments	
8(a)	$7 + 12\sqrt{5} + 6(9 - 2\sqrt{5})$ or $12\sqrt{5} + 6(-2\sqrt{5}) = 0$ or $12\sqrt{5} \div 2\sqrt{5} = 6$ or states that need to add 6 lots of $(9 - 2\sqrt{5})$ or 7th term	M1	oe eg 7 + 6 × 9 or 7 + 54 or 6 × -2 = -12 allow 7 + 12 $\sqrt{5}$ + (n - 1)(9 with n = 7 allow 7 + 12 $\sqrt{5}$ + n(9 - 2 $\sqrt{5}$ with n = 6	9 – 2 √5)
U(u)	61	A1		
	Additional Guidance			
	61 in working lines with 7(th) on answer line			M1A0
	If repeatedly adding $(9 - 2\sqrt{5})$ they muscless select the relevant one	ist stop afte	r adding 6 lots or clearly	
	Answer 6 or 6th term with M1 not seen			M0A0
	Ignore any conversions to decimals			
	Beware $(9 - 2\sqrt{5})(9 + 2\sqrt{5}) = 61$			M0A0

Q	Answer	Mark	Comments	i
	$\frac{29}{5}$ or $5\frac{4}{5}$ or 5.8	B2	oe eg $5\frac{8}{10}$ B1 any two of 1, $\frac{11}{5}$, $\frac{26}{10}$	oe values
	Additional Guidance			
8(b)	Terms must be evaluated for B1 unless	correct and	swer seen	
0(0)	eg1 $\frac{3-1}{1+1} + \frac{12-1}{4+1} + \frac{27-1}{9+1}$			B0
	eg2 $\frac{3-1}{1+1} + \frac{12-1}{4+1} + \frac{27-1}{9+1} = 5.8$			B2
	1 7 2.6			B1
	Ignore conversion attempts after a corre	ect value se	en	

Q	Answer	Mark	Comments
	Alternative method 1		
	(Second differences =) 4 or $2n^2$	M1	second differences seen at least once and not contradicted may be seen by the sequence
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1dep	subtracts $2n^2$ from the given terms
	$2n^2 - 5$	A1	oe eg $2n^2 + 0n - 5$ does not need terms collected
8(c)	Alternative method 2		
	(Second differences =) 4 or $2n^2$	M1	second differences seen at least once and not contradicted may be seen by the sequence
	3a + b = 33 and substitutes $a = 2$ or b = 0	M1dep	Oe
	$2n^2 - 5$	A1	oe eg $2n^2$ + 0n – 5 does not need terms collected

Q	Answer	Mark	Comments		
	Alternative method 3				
	Any three of a + b + c = -3 4a + 2b + c = 3 9a + 3b + c = 13 16a + 4b + c = 27	M1			
	3a + b = 33 and $5a + b = 13 - 3$ or a = 2 and $b = 0$	M1dep	oe obtains two correct equations in same two variables from their equations		
	$2n^2 - 5$	A1	oe eg $2n^2 + 0n - 5$ does not need terms collected		
	Alternative method 4				
8(c) cont	(Second differences =) 4 or $2n^2$	M1	second differences seen at least once and not contradicted		
com	$2 \times 1^2 + b \times 1 - 5 = -3$		may be seen by the sequence $2n^2 + bn - 5 = -3$ with n = 1 substituted		
	$2 \times 1 + b \times 1 - 5 = -3$ or $2 + b - 5 = -3$ or $b = 0$	M1dep	2n + bn - 5 = -3 with $n = 1$ substituted oe eg $2 \times 2^2 + b \times 2 - 5 = 3$		
	$2n^2 - 5$	A1	oe eg $2n^2 + 0n - 5$ does not need terms collected		
	Additional Guidance				
	Condone working in a different variabl	e			
	Alt 1 2nd M1 Subtracting given terms from $2n^2$ lead eg final answer $2n^2 - 5$ $(2n^2 - 5n \text{ or } 2n^2 - 5n - 5 \text{ is not a received})$	5 (5 5) must be recovered			
	Answer 2n ² scores at least M1				
	Condone $n = 2n^2 - 5$ or $2n^2 - 5 = 0$	M2A1			

Q	Answer	Mark	Comments	i
	$(p + 6)^{10}(p + 5)$ or $(p + 5)(p + 6)^{10}$	B2	B1 $(p + 6)^{10}(p + 6 - 1)$ or states $x = p + 6$ and $x^{10}(p + 6)^{10}(p + 6)^{10}(p + 6)^{10}(p + 6)^{10}(p + 6)^{10})$ or correct partial factorisation eg $(p + 6)[(p + 6)^{10} - (p + 6)^{10}(p + 6)^{10}(p + 6)^{10}(p + 6)^{10}(p + 6)^{10})]$	») ») ⁹]
	Additional Guidance			
	Any shape of bracket may be used			
	$(p+6)^{10}((p+6)-1)$			B1
9	Missing brackets must be recovered eg $p + 5 (p + 6)^{10}$ not recovered and B1 response not seen			В0
	Condone $(p + 6)^{10}(p + 5)$			B2
	Condone $(p + 6)^{10}(p + 6 - 1)$			B1
	$(p + 6)^{10}(p + 5)$ followed by expansion attempt			B1
	B1 response followed by expansion attempt $(p + 6)^{10} \times (p + 5)$			B1
				B1
	Condone multiplication signs for B1 eg $(p + 6)^{10} \times (p + 6 - 1)$			B1
	$\left(p+6\right)^{11}\left[1-\frac{1}{p+6}\right]$			B1

Q	Answer	Mark	Comments	
	$f(x) \leq 25$ or $25 \geq f(x)$	B2	B1 $f(x) < 25$ or $k \leq f(x) \leq 25$ or $k < f(x) \leq 25$ where k is any number < 25 SC1 ≤ 25 or $x \leq 25$	5
		Iditional G		
	Condone $f(x)$ replaced by eg y or f or fx or $F(x)$ or F or Fx or $x^3 - 2$ in B2 or B1 responses			
	Equivalent inequalities may be seen 25 > f(x)			B1
10(a)	Allow $-\infty < f(x) \le 25$			B2
i o(u)	Condone $-\infty \leq f(x) \leq 25$			B2
	$-\infty < f(x) < 25$ or $-\infty \leqslant f(x) < 25$			B1
	[−∞, 25] or (−∞, 25]			B1
	(−∞, 25)			B0
	Condone $f(x) = \leq 25$		B2	
	Condone $f(x) = < 25$			B1
	Condone $f(x) = x \leq 25$			SC1
	$f(x) \leqslant 25$ in working with list of integers	on answer	line	B1
	Only a list of integers			B0

Q	Answer	Mark	Comments	
	$1 \leq g(x) \leq 5$ or $5 \geq g(x) \geq 1$	B2	B1 $1 \leq g(x) < 5$ or $1 < g(x)$ or $1 < g(x) < 5$ or $g(x) \ge 1$ and $g(x) \le 5$ or $1 \leq g(x) \le k$ where k is a constant > 1 or $p \leq g(x) \le 5$ where p is a constant < 5 SC1 $1 \le x \le 5$	s) ≤ 5
	Ac	ditional G	uidance	
	Condone g(x) replaced by eg y or g or gx or f(x) or f or fx or $5 - x^2$ in B2 or B1 responses			
	Equivalent inequalities may be seen eg $5 \ge g(x) > 1$			B1
10(b)	Only $g(x) \ge 1$ given as the answer			B0
	Only $g(x) \leq 5$ given as the answer			B0
	$1 \leqslant g(x) \leqslant 4$			B1
	$1 \leq g(x) < 4$			B0
	$0 \leq g(x) \leq 5$			B1
	$0 < g(x) \leq 5$			B0
	Invalid statements do not score eg1 $1 \leq g(x) \geq 5$			B0
	eg2 $1 \ge g(x) \le 5$			B0
	eg3 $6 \leq g(x) \leq 5$			B0
	[1, 5]			B1
	[1, 5) or (1, 5] or (1, 5) or 1-5 or	5 – 1		B0
	$1 \leq g(x) \leq 5$ in working with list of integration $f(x) \leq 1$	gers on ans	wer line	B1
	Only a list of integers			B0

Q	Answer	Mark	Comments	
	x = -2	B1		
11	Additional Guidance			

	Alternative method 1		
	$\frac{1}{2} \times \frac{4}{3} \times \pi \times (6a)^3$ or $\frac{2}{3} \times \pi \times 216a^3$ or $144\pi a^3$	M1	oe eg $\frac{1}{2} \times \frac{4}{3} \times \pi \times \left(\frac{12a}{2}\right)^3$ or $\frac{2}{3} \times \pi \times (6a)^3$
12	$a^{3} = \frac{486\pi}{144\pi}$ or $a^{3} = \frac{27}{8}$ or $a^{3} = 486 \div \left(\frac{2}{3} \times 6^{3}\right)$ or $a^{3} = 3.375$ or $\sqrt[3]{3.375}$	A1	oe equation of form $a^3 =$ or calculation allow $(6a)^3 = 729$ or $6a = 9$
	$\frac{3}{2}$ or $1\frac{1}{2}$ or 1.5	A1	SC1 answer 0.75 oe or answer 1.19 or answer 4.95

Q	Answer	Mark	Comments		
	Alternative method 2				
	$r^{3} = \frac{486\pi}{\frac{2}{3}\pi}$ or $r^{3} = 729$ or $\sqrt[3]{729}$ or 9	M1	oe equation of form r ³ = or calculation		
12 cont	$6a = \sqrt[3]{\frac{486\pi}{\frac{2}{3}\pi}}$ or $6a = 9$ or $9 \div 6$	A1	oe equation or calculation allow (6a) ³ = 729		
	$\frac{3}{2}$ or $1\frac{1}{2}$ or 1.5	A1	SC1 answer 0.75 oe or answer 1.19 or answer 4.95		
	Additional Guidance				
	Allow recovery of missing brackets				
	Allow use of $\pi = [3.14, 3.142]$				

Q	Answer	Mark	Comments	
	$x(1 - x^{2})$ or $2x(1 + x)$ or $x(2 + 2x)$ or $\frac{1 - x^{2}}{2 + 2x}$	M1	implied by 2nd M1 oe factorisation eg $-x(x^2 - 1)$	
	x(1 + x)(1 - x) or $\frac{x(1 - x^{2})}{2x(1 + x)}$ or $\frac{1 - x^{2}}{2(1 + x)}$ or $\frac{(1 + x)(1 - x)}{2 + 2x}$	M1dep	implies M2 oe factorisation eg $-x(x + 1)(x - 1)$	
13	$\frac{x(1+x)(1-x)}{2x(1+x)} \text{ or } \frac{(1+x)(1-x)}{2(1+x)}$ or $\frac{x(1-x)}{2x}$	M1dep	implies M3 oe factorisation eg $\frac{-x(x+1)(x-1)}{2x(1+x)}$	
	$\frac{1-x}{2}$ with M3 seen	A1	oe simplest form eg $\frac{1}{2}(1-x)$ or $\frac{1}{2} - \frac{1}{2}x$ or	$-\frac{-x+1}{2}$
	Additional Guidance			
	$\frac{x(1+x)(1-x)}{2x(1+x)} \text{ or } \frac{(1+x)(1-x)}{2(1+x)} \text{ or } \frac{x(1-x)}{2x}$ is sufficient working			MЗ
	$2(x + x^2)$ with no further work			MO
	$\frac{x-1}{-2}$ with M3 seen or $-\frac{1}{2}(x-1)$ with M3 seen or $\frac{-(x-1)}{2}$ with M3 seen			M3A1

Q	Answer	Mark	Comments	
	$a^{2} + (3a)^{2} - 2 \times a \times 3a \times \cos 120$ or $\cos 120 = \frac{a^{2} + (3a)^{2} - b^{2}}{2 \times a \times 3a}$	M1	oe eg may substitute cos 120 = -0.5 may be seen in a square root	
	$b^{2} = a^{2} + 9a^{2} + 3a^{2}$ or $b^{2} = 13a^{2}$ or $-b^{2} = -13a^{2}$ or $b = \sqrt{13} a$	A1	oe equation of the form $b^2 = \text{ or } b =$ with brackets expanded and terms fully simplified cos 120 = -0.5 substituted	
14	13 : 1	A1	SC1 7:1	
	Additional Guidance			
	Allow recovery of missing brackets			
	$a^2 = a^2 + (3a)^2 - 2 \times a \times 3a \times \cos 120$ not recovered)A0
	$b^2 = 10a^23a^2$			A0
	$b^2 = 10a^2 + 3a^2$		M1A1	A0

Q	Answer	Mark	Comments		
	Alternative method 1				
	3mp = 3(2p + 1) + p + 5 or (m =) $\frac{3(2p+1)}{3p} + \frac{p+5}{3p}$ or (m =) $\frac{6p+3+p+5}{3p}$	M1	oe fractions eliminated or common denominator eg (m =) $\frac{3p(2p+1)}{3p^2} + \frac{p(p+5)}{3p^2}$ or (m =) $\frac{6p^2 + 3p + p^2 + 5p}{3p^2}$		
15	3mp = 6p + 3 + p + 5 or $3mp = 7p + 8$	M1dep	oe brackets expanded and fractions eliminated eg $3mp^2 = 7p^2 + 8p$ implies M2		
	3mp - 7p = 8 or $\frac{8}{3m - 7}$ or $\frac{-8}{7 - 3m}$	M1dep	oe terms collected eg $p(3m - 7) = 8$ or $7p - 3mp = -8$ implies M3		
	$p = \frac{8}{3m-7}$ or $p = \frac{-8}{7-3m}$	A1	oe eg $\frac{8}{3m-7} = p$		

Q	Answer	Mark	Comments		
	Alternative method 2				
	$(m =) \frac{3(2p+1)}{3p} + \frac{p+5}{3p}$ or (m =) $\frac{6p+3+p+5}{3p}$	M1	oe common denominator eg (m =) $\frac{3p(2p+1)}{3p^2} + \frac{p(p+5)}{3p^2}$ or (m =) $\frac{6p^2 + 3p + p^2 + 5p}{3p^2}$		
	$m = \frac{7p+8}{3p}$ and $m = \frac{7}{3} + \frac{8}{3p}$ and $m - \frac{7}{3} = \frac{8}{3p}$	M1dep	simplifies numerator and isolates term in p eg m = $\frac{7 p^2 + 8 p}{3 p^2}$ and m = $\frac{7}{3} + \frac{8}{3 p}$ and m - $\frac{7}{3} = \frac{8}{3 p}$ implies M2		
15 cont	$\frac{3m-7}{3} = \frac{8}{3p}$	M1dep	converts $m - \frac{7}{3}$ to a single fraction implies M3		
	$p = \frac{8}{3m-7}$ or $p = \frac{-8}{7-3m}$	A1	oe eg $\frac{8}{3m-7} = p$		
	Additional Guidance				
	$p = \frac{8}{3m-7}$ in working but $\frac{8}{3m-7}$ on a	M3A1			
	Allow recovery of missing brackets				
	$p = \frac{8}{3m-7}$ followed by incorrect furthe	M3A0			
	Allow equivalences for A1 eg p = $\frac{\frac{8}{3}}{\frac{3m-7}{3}}$		M3A1		
	Do not regard eg $3m(p) = 7p + 8$ as h	aving unex	panded brackets M1M1dep		

Q	Answer	Mark	Comments	
			-	
	$\frac{8-5}{2} = \sqrt{1-a} \text{ or } \frac{3}{2} = \sqrt{1-a}$ or $3^2 = 2^2(1-a) \text{ or } 9 = 4(1-a)$	M1		
16	$1 - a = \left(\frac{3}{2}\right)^{2}$ or $1 - a = \frac{9}{4}$ or $9 = 4 - 4a$ or $\frac{4 - 9}{4}$	M1dep	oe equation or calculation eg $1 - a = \left(\frac{8-5}{2}\right)^2$ or $1 - a = 2.25$ or $\frac{9-4}{-4}$ implies M2	
	$-\frac{5}{4}$ or -1.25 or $-1\frac{1}{4}$	A1		
	Additional Guidance			
	$3 = 2\sqrt{1-a}$			MO
	Allow recovery of missing brackets			

Q	Answer	Mark	Comments		
	$x^{2} + 3x + x + 3$ with three terms correct or $x^{2} + 4x + k$ where k is a non-zero constant	M1	oe expansion attempt of one pair of brackets eg1 $x^2 + 4x + 3x + 12$ with three terms correct or $x^2 + 7x + k$ where k is a non-zero constant eg2 $x^2 + 4x + x + 4$ with three terms correct or $x^2 + 5x + k$ where k is a non-zero constant		
17	$x^{3} + 3x^{2} + x^{2} + 3x$ or $x^{3} + 4x^{2} + 3x$ or $4x^{2} + 12x + 4x + 12$ or $4x^{2} + 16x + 12$	M1dep	attempt at a full expansion with correct multiplication of their 3 or 4 terms by one of the terms in the remaining bracket oe eg $x^3 + 4x^2 + 3x^2 + 12x$ or $x^3 + 7x^2 + 12x$ or $x^2 + 4x + 3x + 12$ or $x^2 + 7x + 12$ ($x^2 + 7x + 12$ must be from an attempt at a full expansion) or $x^3 + 4x^2 + x^2 + 4x$ or $x^3 + 5x^2 + 4x$ or $3x^2 + 12x + 3x + 12$ or $3x^2 + 15x + 12$		
	$x^3 + 8x^2 + 19x + 12$	A1	fully correct expansion allow if terms not collected eg $x^3 + 3x^2 + x^2 + 3x + 4x^2 + 12x + 4x + 12$ or $x^3 + 4x^2 + 3x + 4x^2 + 16x + 12$		
	x ² + 8x + 12	A1ft	ft M2A0 full simplification of their $(x^3 + 8x^2 + 19x + 12) - x^3 - 7x^2 - 11x$ their $(x^3 + 8x^2 + 19x + 12)$ must be a cubic		
	$x^{2} + 8x + 12$ and (x + 6)(x + 2) or $(x + 2)(x + 6)$	A1	oe product of brackets		
	Additional Guidance is on the next page				

Q	Answer Mark	Comments	
	Additional	Guidance	
	1st M1 Do not allow omissions or extras		
	eg1 $x^2 + 3x + 3$		MO
	eg2 $x^2 + 3x + x + 3 + x^2$		MO
	For the first 2 marks terms may be seen in a gric		
	If 1st A1 has been awarded with terms not collect using their simplified cubic	ted, A1ft can still be awarded	
	eg $x^3 + 4x^2 + 3x + 4x^2 + 16x + 12$		M1M1A1
	$= x^3 + 8x^2 + 18x + 12$		
	$x^{3} + 8x^{2} + 18x + 12 - x^{3} - 7x^{2} - 11x$		
17 cont	$= x^{2} + 7x + 12$		A1ftA0
	First A1 may be seen embedded		
	eg $x^3 + 8x^2 + 19x + 12 - x^3 + 7x^2 - 11x$		M1M1A1
	If an attempt at the expansion of all three bracke fully correct to gain M2A1, otherwise M0M0A0	ts in one go is made it must be	
	eg $x^2 + 3x + x + 3 + x^2 + 4x$		M0M0A0
	Allow recovery of missing brackets when subtrac	ting $x^3 + 7x^2 + 11x$ from their	
	For final A1 allow $x^2 + 8x + 12$ and $a = 6$ $b = 2$		
	or $x^2 + 8x + 12$ and $a = 2$ $b = 6$		
	Ignore equating to zero and/or any 'solving' of ar	equation	

Q	Answer	Mark	Comments	
	Alternative method 1			
	$x-5 = \frac{k}{2}$ or $x-5 = -\frac{k}{2}$ or $2(x-5) = k$ or $2x - 10 = k$ or $2(x-5) = -k$ or $2x - 10 = -k$	M1	oe linear equation eg $x - 5 = \sqrt{\frac{k^2}{4}}$ or $x = \frac{k}{2} + 5$ or $\sqrt{4} (x - 5) = \sqrt{k^2}$	
	$x-5 = \frac{k}{2}$ and $x-5 = -\frac{k}{2}$ or 2(x-5) = k and $2(x-5) = -kor2x - 10 = k$ and $2x - 10 = -k$	A1	oe eg $x - 5 = \pm \frac{k}{2}$ square root(s) must be processed implied by final A1	
18	$\frac{k}{2}$ + 5 and $-\frac{k}{2}$ + 5	A1	oe simplest form eg $\frac{10+k}{2}$ and $\frac{10-k}{2}$ or $\frac{k+10}{2}$ and $\frac{k-10}{-2}$ or $5 \pm 0.5k$	
	Alternative method 2			
	$4x^2 - 40x + 100 - k^2 \ (= 0)$	M1	expands and collects terms	
	$\frac{40\pm\sqrt{(-40)^2-4\times4\times(100-k^2)}}{2\times4}$	A1	oe eg $\frac{40 \pm \sqrt{16k^2}}{8}$ or $\frac{40 \pm 4k}{8}$ implied by final A1	
	$\frac{k}{2}$ + 5 and $-\frac{k}{2}$ + 5	A1	oe simplest form eg $\frac{10+k}{2}$ and $\frac{10-k}{2}$ or $\frac{k+10}{2}$ and $\frac{k-10}{-2}$ or $5 \pm 0.5k$	
	Ac	Iditional G	uidance	
	Allow recovery of missing brackets			

Q	Answer	Mark	Comments	;
	$\sqrt{(3x)^{2} + (4x)^{2}} (= 5x)$ or $\sqrt{9x^{2} + 16x^{2}} (= 5x)$ or $(3x)^{2} + (4x)^{2} = (5x)^{2}$ or $3x, 4x, 5x \text{ triangle}$	B1	may be seen in stages eg $9x^2 + 16x^2 = 25x^2$ and $\sqrt{25x^2}$ (= 5x)	
	Additional Guidance			
	Only $\sqrt{25x^2}$ (= 5x) seen			B0
19(a)	Pythagorean triple 3x, 4x, 5x			B1
	Pythagorean triple 3, 4, 5			B0
	Missing brackets can not be recovered			
	eg1 $\sqrt{3x^2 + 4x^2} = 5x$			В0
	eg2 $3x^2 + 4x^2 = 9x^2 + 16x^2 = 25x^2$ and $\sqrt{25x^2}$ (= 5x)			В0
	Incorrect statements are B0 (mark the	ull respons	e)	
	eg1 $9x^2 + 16x^2 = 25x^2 = \sqrt{25x^2}$ (= 5x)			В0
	eg2 $9x^2 + 16x^2 = 25x^2 - \sqrt{25}x^2 (= 5x)$			В0
	eg3 $\sqrt{(3x)^2 + (4x)^2} = 5x$ and $3x + 4x = 5x$			В0
	Only uses values for x			B0

Q	Answer	Mark	Comments		
	Alternative method 1				
	$0.5 \times 4x \times 3x$ or $6x^2$	M1	oe may be seen on the diagram		
	$(6.5x)^2 - (2.5x)^2$ or $42.25x^2 - 6.25x^2$ or $36x^2$	M1	oe eg $(6.5x)^2 - \left(\frac{5x}{2}\right)^2$		
	$\sqrt{\text{their } 36x^2}$ or $6x$	M1dep	dep on 2nd M1 may be seen on the diagram		
	$0.5 \times 5x \times \text{their } 6x \text{ or } 15x^2$	M1dep	oe dep on 2nd and 3rd M1		
	21x ²	A1	allow $p = 21$ if areas $6x^2$ and $15x^2$ seen		
	Alternative method 2				
19(b)	$0.5 \times 4x \times 3x$ or $6x^2$	M1	oe may be seen on the diagram		
	$\cos ACD = \frac{2.5x}{6.5x}$ or $\cos ACD = \frac{5}{13}$	M1	oe		
	$\cos^{-1} \frac{2.5x}{6.5x}$ or 67(.3) or 67.4	M1dep	oe eg $\cos^{-1} \frac{(6.5x)^2 + (5x)^2 - (6.5x)^2}{2 \times 6.5x \times 5x}$ dep on 2nd M1		
	$0.5 \times 5x \times 6.5x \times sin$ their 67(.3) or $15x^2$	M1dep	oe dep on 2nd and 3rd M1		
	21x ²	A1	allow $p = 21$ if areas $6x^2$ and $15x^2$ seen		

Q	Answer	Mark	Comments	
	Alternative method 3			
	$0.5 \times 4x \times 3x$ or $6x^2$	M1	oe may be seen on the dia	gram
	$(5x)^2 = (6.5x)^2 + (6.5x)^2$	M1	ое	
	$-2 \times 6.5 \times 6.5 \times \cos D$			
	$\cos^{-1} \frac{(6.5x)^2 + (6.5x)^2 - (5x)^2}{2 \times 6.5x \times 6.5x}$		0e den en 2nd M1	
	or $\cos^{-1} \frac{119}{169}$	M1dep	dep on 2nd M1	
	or 45(.2)			
	$0.5 \times 6.5x \times 6.5x \times sin$ their 45(.2) or $15x^2$	M1dep	oe dep on 2nd and 3rd M1	
19(b) cont	21x ²	A1	allow $p = 21$ if areas $6x^2$ and	d 15x ² seen
	Additional Guidance			
	Allow recovery of algebra eg1 $0.5 \times 4 \times 3 = 6$ is 1st M0 but if recovered to $6x^2$ scores 1st M1 eg2 Alt 1 $\sqrt{42.25 - 6.25} = 6$ is 2nd M0 and 3rd M0 but if recovered to 6x scores 2nd M1 and 3rd M1			
	Do not allow final mark if an incorrect area is seen eg do not allow answer $21x^2$ if their two areas are $6x^2$ and $15x$			
	Answer 21x ² with no incorrect working eg fully correct working with numbers a	nd final ans	wer 21x ²	5 marks
	Allow recovery of missing brackets			
	Choose the scheme that favours the student			

Q	Answer	Mark	Comments		
	Alternative method 1				
	Full method leading to angle <i>BCD</i> = 180 – 2x	M1	eg angle $CFE = x$ and angle $FCE = 180 - 2x$ and angle $BCD = 180 - 2x$		
	Full reasoning for their method	A1	eg (base angles of) isosceles (triangle are equal) and (sum of) angles in a triangle (is 180) and (vertically) opposite angles		
20(a)	angle <i>BAD</i> = 2x and (opposite angles of) cyclic quadrilateral (add to 180)	A1	must see M1		
	Alternative method 2 Working out angle <i>DCF</i> using angle at centre				
	angle $DCF = 2x$	M1			
	angle at centre (is double angle at circumference)	A1			
	Full method leading to angle <i>BAD</i> = 2x and full reasoning for their method	A1	must see M1 eg angle $BCD = 180 - 2x$ and angle $BAD = 2x$ and angles on a (straight) line (add to 180) and (opposite angles of) cyclic quadrilateral (add to 180)		

Mark scheme and Additional Guidance continue on the next three pages

Q	Answer	Mark	Comments
	1		
	Alternative method 3 Working ou	t angle D	CF not using angle at centre
	Full method leading to angle $DCF = 2x$	M1	eg angle $CFE = x$ and angle $DCF = 2x$
20(a) cont	Full reasoning for their method	A1	eg (base angles of) isosceles (triangle are equal) and exterior angle (of triangle is sum of interior opposite angles)
	Full method leading to angle $BAD = 2x$ and full reasoning for their method	A1	must see M1 eg angle $BCD = 180 - 2x$ and angle $BAD = 2x$ and angles on a (straight) line (add to 180) and (opposite angles of) cyclic quadrilateral (add to 180)

Mark scheme and Additional Guidance continue on the next two pages

Q	Answer	Mark	Comments
	Alternative method 4		
	Full method leading to angle $DFC = 90 - x$ and angle $ABC = 90 - x$	M1	eg angle $CFE = x$ and angle $DFE = 90$ and angle $DFC = 90 - x$ and angle $CDF = 90 - x$ and angle $ADC = 90 + x$ and angle $ADC = 90 + x$
20(a) cont	Full reasoning for their method	A1	eg (base angles of) isosceles (triangle are equal) and (angle in a) semicircle (is 90) and (sum of) angles in a triangle (is 180) and angles on a (straight) line (add to 180) and (opposite angles of) cyclic quadrilateral (add to 180)
	angle <i>BAD</i> = 2x and (sum of) angles in a triangle (is 180)	A1	must see M1

Additional Guidance is on the next page

Q	Answer	Mark	Comment	S	
	· · · · · · · · · · · · · · · · · · ·				
	Ad	ditional G	uidance		
	It is possible to score M1A1A0 or M1A	0A1			
	Do not award any marks from angles o	n the diagr	am		
	Angles must be stated unambiguously				
	eg condone angle <i>B</i> but do not condon	e angle D			
	'angle' may be missing or replaced by a symbol - mark intention				
	angle CFE may be seen as angle EFC or angle BFE etc				
20(-)	For (base angles of) isosceles (triangle are equal) allow radii (are equal)				
20(a) cont	For (sum of) angles in a triangle (is 18				
	Use judgement when considering word abbreviations				
	Alt 2 Final A1 reason may be				
	exterior angle of cyclic quadrilateral (ec				
	Choose the scheme that favours the st				
	Ignore angles that are not needed for the				
	Allow recovery of missing brackets				
	Starting with angle $BAD = 2x$			M0A0A0	

Q	Answer	Mark	Comments
-			
	30		B1 correct equation or calculation
			eg $90 + 2x + x = 180$
		B2	or $90 - x = 2x$
			or 3x = 90
20(b)			or 6x = 180
20(0)			or 90 ÷ 3
	Ad	uidance	
	Ignore any expressions for angles and	calculated angles	
	Ignore any reasons		

Q	Answer	Mark	Comments	
	$8^2 + 12^2$ or 64 + 144 or 208		HC ²	
	or $8^2 + 12^2 + 15^2$ or $64 + 144 + 225$ or 433	M1	or <i>CE</i> ² implied by 2nd M1	
	$\sqrt{8^2 + 12^2}$ or $\sqrt{208}$ or $4\sqrt{13}$ or 14.4 or $\sqrt{8^2 + 12^2 + 15^2}$ or $\sqrt{433}$ or 20.8	M1dep	oe may be on diagram fully correct trigonometry method leadin 14.4 or 20.8 can score M2 eg $8 \div \sin\left(\tan^{-1}\frac{8}{12}\right)$ or $8 \div \sin\left(\tan^{-1}\frac{8}{\sqrt{12^2 + 15^2}}\right)$	ng to
21	$\tan x = \frac{15}{\sqrt{8^2 + 12^2}}$ or $\cos x = \frac{\sqrt{8^2 + 12^2}}{\sqrt{8^2 + 12^2 + 15^2}}$ or $\sin x = \frac{15}{\sqrt{8^2 + 12^2 + 15^2}}$	M1dep	oe eg tan x = [1.04, 1.042] or or cos x = [0.69, 0.6934] or sin x = [0.72, 0.7212] or 90 - tan ⁻¹ $\frac{\sqrt{8^2 + 12^2}}{15}$ dep on M2 any letter	
	46(.1)	A1		
	Ad	iuidance		
	3rd M1 If using sine rule or cosine rule, must be in the form $\cos x = \text{ or } \sin x =$ eg $\cos x = \frac{20.8^2 + 14.4^2 - 15^2}{2 \times 20.8 \times 14.4}$ (oe eg \cos^{-1} [0.69, 0.6934])			
	3rd M1 Condone $\tan = \frac{15}{\sqrt{8^2 + 12^2}}$ etc			
	Allow the first 2 M marks even if not su	bsequentl	y used	
	Allow recovery of missing brackets			

Q	Answer		Mark	Comments
	Alternative method $2\sin^2 x - 1 + 1 - \sin^2 x$			use of $sin^2x + cos^2x = 1$ in numerator
22(a)	or $2\sin^2 x - (\sin^2 x + \cos^2 x) + \cos^2 x$ or $2\sin^2 x - \sin^2 x - \cos^2 x + \cos^2 x$ or $2\sin^2 x - \sin^2 x$ or $\sin^2 x - \cos^2 x + \cos^2 x$ or $1 + \sin^2 x - 1$	M1	ignore any denominator	
	$\frac{\sin^2 x}{\sin x \cos x}$ with M1 seen	$\frac{\sin^2 x}{\tan x \cos^2 x}$ with M1 seen	M1dep	simplification to one step from $\frac{\sin x}{\cos x}$ or simplification to one step from $\frac{\tan^2 x}{\tan x}$
	$\frac{\sin x}{\cos x}$ and $\tan x$ with M2 seen	$\frac{\tan^2 x}{\tan x}$ and $\tan x$ with M2 seen	A1	SC3 equates given expression to tan x and cross multiplies to show equivalence with full working shown

Mark scheme and Additional Guidance continue on the next two pages

Q	Ans	swer	Mark	Comments
	Alternative metho	od 2		
	$2(1 - \cos^2 x) - 1 + \cos^2 x$ or $2 - 2\cos^2 x - 1 + \cos^2 x$		M1	use of $sin^2x + cos^2x = 1$ in numerator ignore any denominator
	$\frac{1 - \cos^2 x}{\sin x \cos x}$ and $\frac{\sin^2 x}{\sin x \cos x}$ with M1 seen	$\frac{1 - \cos^2 x}{\sin x \cos x}$ and $\frac{\sin^2 x}{\tan x \cos^2 x}$ with M1 seen	M1dep	simplification to one step from $\frac{\sin x}{\cos x}$ or simplification to one step from $\frac{\tan^2 x}{\tan x}$
22(a) cont	$\frac{\sin x}{\cos x} \text{ and } \tan x$ with M2 seen	$\frac{\tan^2 x}{\tan x}$ and $\tan x$ with M2 seen	A1	SC3 equates given expression to tan x and cross multiplies to show equivalence with full working shown
	Alternative method 3			
	$\frac{2\sin x}{\cos x} - \frac{\sin^2 x}{\sin x \cos x}$		M1	from $\frac{2\sin^2 x}{\sin x \cos x} - \frac{1 - \cos^2 x}{\sin x \cos x}$
	$2\tan x - \frac{\sin^2 x}{\sin x \cos x}$ or $\frac{2\sin x}{\cos x} - \frac{\sin x}{\cos x}$ with M1 seen		M1dep	simplification to one step from 2tan x – tan x
	2tan x – tan x and tan x with M2 seen		A1	SC3 equates given expression to tan x and cross multiplies to show equivalence with full working shown

Additional Guidance is on the next page

Q	Answer M	ark	Comments	
	Additio	nal G	uidance	
22(a) cont	Equating given expression to tan x and cros M1M0A0 eg1 Alt 1 $\frac{2\sin^2 x - 1 + \cos^2 x}{\sin x \cos x} = \tan x$ $2\sin^2 x - 1 + \cos^2 x = \tan x \sin x \cos x$ $2\sin^2 x - 1 + 1 - \sin^2 x = \tan x \sin x \cos x$ eg2 $\frac{2\sin^2 x - 1 + \cos^2 x}{\sin x \cos x} = \tan x$ $2\sin^2 x - 1 + \cos^2 x = \tan x \sin x \cos x$ $2\sin^2 x - 1 + \cos^2 x = \tan x \sin x \cos x$ $\sin^2 x = \tan x \sin x \cos x$ $\sin^2 x = \tan x \sin x \cos x$			M1M0A0
	$\sin^2 x = \sin^2 x$			SC3
	Use of $\sin x = \frac{\text{opp}}{\text{hyp}}$ etc			M0M0A0
	Allow sin or s for sin x etc			
	Condone sin x^2 for sin ² x etc			
	Allow any letter for x			
	Alts 1 and 2			
	For A1 $\frac{\sin x}{\cos x}$ is implied by $\frac{\sin^2 x}{\sin x \cos x}$ with	h cano	elling shown	

Q	Answer	Mark	Comments	i
	135 and 315 with no other solutions [0, 360]B1 135 with no other solution or 315 with no other solution SC1 135 and 315 with or solution [0, 360]			ons [0, 360]
		ditional G	uidance	
	Mark the answer line unless blank eg 135 and 315 in working with 135 on answer line			
	-45 and 135 and 315			
22(b)	-45 and 135			B1
	Ignore incorrect solutions outside the ra			
	eg 135 and 315 and -90	B2		
	135 and 225 and 315	SC1		
	Both answers embedded ie tan 135 tan 315			
	0 and 135 and 225 and 315			
	45 and 135			B0
	225 and 315			B0

	(1, -3)	B1		
23(a)	Additional Guidance			
	Mark intention eg condone 1, -3			B1

Q	Answer	Mark	Comments	;
	Alternative method 1			
	$-3 + \sqrt{25}$ (= 2) or -3 + 5 (= 2)	oe eg 5-3 (= 2) or 2+3 B1		3 = 5
	Alternative method 2			
23(b)	$(y + 3)^{2} = 25$ and $y = 2$ or y + 3 = 5 and $y = 2or(2 + 3)^{2} = 25$	B1	oe eg $(1-1)^2 + (y+3)^2 = 25$ and $y = 2$	
	Additional Guidance			
	(1, -3) + (0, 5) = (1, 2) so $y = 2$			B0
	Allow -3 + radius of 5			B1
	2 = 0x + c			
	c = 2 so y = 2			B0

Q	Answer	Mark	Comments		
	Alternative method 1 Using equation <i>PR</i>				
	$\frac{-7 - \text{their} - 3}{4 - \text{their} 1} \text{ or } -\frac{4}{3}$	M1	oe grad <i>PC</i> their –3 and their 1 from (a)		
	$-1 \div \text{their} -\frac{4}{3} \text{ or } \frac{3}{4}$	M1	oe grad <i>PR</i> their $-\frac{4}{3}$ must be a value (gradient <i>PR</i> =) $\frac{3}{4}$ is M2		
	$27 = $ their $\frac{3}{4}(x - 4)$	M1dep	oe equation <i>PR</i> with y = 2 substituted eg 2 = $\frac{3}{4}$ x - 10 dep on 2nd M1		
23(c)	16	A1ft	only ft their –3 and their 1 from (a)		
	Alternative method 2 Using $RC^2 = CP^2 + PR^2$ or $PR^2 = QR^2$ with $R(x, 2)$				
	$(x - \text{their 1})^2 + (2 - \text{their} - 3)^2$ = $(2 - \text{their} - 3)^2 + (x - 4)^2 + (27)^2$	M1	oe eg $(x - 1)^2 = (x - 4)^2 + (27)^2$ their -3 and their 1 from (a)		
	$x^{2} - 2x + 1 + 25$ = 25 + $x^{2} - 8x + 16 + 81$	M1dep	oe brackets expanded		
	96 = 6x or 96 ÷ 6	M1dep	oe linear equation or calculation dep on M2		
	16	A1ft	only ft their –3 and their 1 from (a)		

Mark scheme and Additional Guidance continue on the next three pages

Q	Answer	Mark	Comments	
	Alternative method 3 Using equat	ion <i>CR</i>		
	$\frac{-7-2}{4-\text{their 1}}$ or -3	M1	oe grad <i>PQ</i> their 1 from (a)	
	$-1 \div \text{their} -3 \text{ or } \frac{1}{3}$	M1	oe grad <i>CR</i> their –3 must be a value (gradient <i>CR</i> =) $\frac{1}{3}$ is M2	
	2 – their –3 = their $\frac{1}{3}$ (x – their 1)	M1dep	oe equation <i>CR</i> with y = 2 substituted eg 2 = $\frac{1}{3}x - \frac{10}{3}$ dep on 2nd M1	
	16	A1ft	only ft their –3 and their 1 from (a)	
23(c) cont	Alternative method 4 Using equation <i>MR</i> where <i>M</i> is the midpoint of <i>PQ</i>			
	$\frac{-7-2}{4-\text{their 1}} \text{ or } -3$	M1	oe grad <i>PQ</i> their 1 from (a)	
	$-1 \div \text{their} -3 \text{ or } \frac{1}{3}$	M1	oe grad <i>MR</i> their –3 must be a value (gradient <i>MR</i> =) $\frac{1}{3}$ is M2	
	$\left(\frac{4 + \text{their 1}}{2}, \frac{-7 + 2}{2}\right) \text{ or } (2.5, -2.5)$ and $2 - \text{their } -2.5 = \text{their } \frac{1}{3}(x - \text{their } 2.5)$	M1dep	oe midpoint of <i>PQ</i> and equation <i>MR</i> with y = 2 substituted eg $2 = \frac{1}{3}x - \frac{10}{3}$ dep on 2nd M1	
	16	A1ft	only ft their 1 from (a)	

Mark scheme and Additional Guidance continue on the next two pages

Q	Answer	Mark	Comments		
	Alternative method 5 Using equation <i>MC</i> where <i>M</i> is the midpoint of <i>PQ</i>				
	$\left(\frac{4 + \text{their 1}}{2}, \frac{-7+2}{2}\right)$ or (2.5, -2.5)	M1	oe midpoint of <i>PQ</i> their 1 from (a)		
	$\frac{\text{their} - 3 - \text{their} - 2.5}{\text{their} 1 - \text{their} 2.5} \text{ or } \frac{1}{3}$	M1dep	oe grad MC		
	2 - their -3 = their $\frac{1}{3}$ (x - their 1) or 2 - their -2.5 = their $\frac{1}{3}$ (x - their 2.5)	M1dep	oe equation <i>MC</i> with y = 2 substituted eg 2 = $\frac{1}{3}x - \frac{10}{3}$ dep on M2		
23(c)	16	A1ft	only ft their –3 and their 1 from (a)		
cont	Alternative method 6 Using trigonometry where <i>M</i> is the midpoint of <i>PQ</i>				
	$(QM =) \frac{1}{2} \sqrt{(4 - \text{their 1})^2 + (-7 - 2)^2}$ or $\frac{1}{2} \sqrt{90}$ or 4.74	M1			
	$\sin^{-1}\left(\frac{\text{their 4.74}}{5}\right)$ or (angle <i>QCM</i> =) 71.5 or 71.6	M1dep	oe angle <i>QCM</i>		
	tan (their 71.5) = $\frac{x - \text{their 1}}{5}$	M1dep	using triangle QCR		
	16	A1ft	only ft their 1 from (a)		

Additional Guidance is on the next page

Q	Answer	Mark	Comments	5		
	Additional Guidance					
	Allow (16,) to imply answer 16					
23(c)						
cont	(a) (1, -2)					
	grad $PC = -\frac{5}{3}$ grad $PR = \frac{3}{5}$			M1M1		
	Answer 19 (3rd M1 can be implied by A1ft answer) M1A1ft					

	$3x^4$ or $4x^3$	M1	oe eg 5 × $\frac{3}{5}$ x ⁵⁻¹		
	$3x^4 + 4x^3$	A1			
	$x^{3}(3x + 4) (= 0)$	M1dep	allow partial factorisation of their $3x^4 + 4$ if at least x is taken as a factor ft their two terms if M1 scored		
	$x^{3}(3x + 4) (= 0)$ and $(x =) 0$ and $(x =) -\frac{4}{3}$	A1	allow partial factorisation if at least x is taken as a factor		
24	with no other solutions				
	Additional Guidance				
	$3x^4 + 4x^3 = 0$	M1A1			
	$x = 0$ and $x = -\frac{4}{3}$	M0A0			
	Condone $y = 3x^4 + 4x^3$	M1A1			
	Ignore higher derivatives				
	Condone (0,) and $\left(-\frac{4}{3},\right)$ for (x =) 0 and (x =) $-\frac{4}{3}$				
	Allow -1.33 for $-\frac{4}{3}$ (ignore any incorrect conversion attempt after $-\frac{4}{3}$ seen)				

Q	Answer	Mark	Comments		
		1	•		
	Alternative method 1	1	1		
	$(-c)^3 - 10(-c) - c \ (= 0)$		oe		
	Or				
	$-c^{3} + 10c - c \ (= 0)$	M1			
	or $-c^3 + 9c \ (= 0)$				
	$c(9-c^2) (= 0)$		oe factorised expression or o	quadratic	
	or		equation		
	c(3 + c)(3 - c) (= 0)	M1dep			
	or $c^2 = 9$				
	3 with no other value(s)	A1	SC2 answer 3 with one or both of -3 and 0 and no other value		
25	Alternative method 2				
	$(x+c)(x^2-cx-1)$	M1			
	$-1 - c^2 = -10$	M1dep	oe quadratic equation		
	3 with no other value(s)	A1	SC2 answer 3 with one or b	ooth of	
			–3 and 0 and no other value		
	Additional Guidance				
	$(-3)^3 - 10(-3) - 3 = 0$ and Answer 3 (no part marks)			M2A1	
	$(-3)^3 - 10(-3)3 = 0$ and Answer 3			Zero	
	$3^3 - 10(3) 3 = 0$ and Answer 3			Zero	
	Answer 3 with no incorrect working			M2A1	
	Allow recovery of missing brackets				

Q	Answer	Mark	Comments			
	Alternative method 1					
	$(x + 3)^2 \dots$	M1				
	$(x + 3)^2 - 3^2 - a$		oe expression or inequality			
	or		eg $(x + 3)^2 \ge 9 + a$			
	$(x+3)^2 - 3^2 \ge a$	M1dep	allow \ge to be any inequality symbol or =			
	or		eg allow $(x + 3)^2 - 9 = a$			
	$(x+3)^2 \ge a+3^2$		implies M2			
	$-3^2 - a \ge 0$		oe inequality eg $-9 - a \ge 0$			
	or	M1dep	or $-9 - a > 0$			
	$-3^2 - a > 0$	Witdep	or a < -9			
			implies M3			
26	$a \leqslant -9$ or $-9 \geqslant a$	A1	SC1 $x^2 + 6x - a \ge 0$ oe inequality			
	AI	(may be seen in working lines)				
	Alternative method 2					
	2x + 6 = 0	M1	must have = 0			
	(minimum at) $x = -3$		implies M2			
		M1dep	x = -3 must be the only value or be clearly chosen			
	$(-3)^2 + 6 \times (-3) - a \ge 0$		oe inequality eg $9 - 18 - a \ge 0$			
	or	M1dep	or $9 - 18 - a > 0$			
	$(-3)^2 + 6 \times (-3) - a > 0$	widep	or a < -9			
			implies M3			
	$a \leqslant -9$ or $-9 \geqslant a$		SC1 $x^2 + 6x - a \ge 0$ oe inequality			
		A1	(may be seen in working lines)			

Mark scheme and Additional Guidance continue on the next page

Q	Answer	Mark	Comment	S	
		·			
	Alternative method 3				
	$6^2 - 4 \times 1 \times -a$		$b^2 - 4ac$		
		M1	must be selected if seen in quadratic formula		
	$6^2 - 4 \times 1 \times -a \leqslant 0$		oe inequality		
	or	M1dep	implies M2		
	$6^2 - 4 \times 1 \times -a < 0$				
	$36 + 4a \leq 0$		oe inequality eg $4a \leqslant -36$;	
26	or	M1dep	implies M3		
cont	36 + 4a < 0				
	$a \leqslant -9$ or $-9 \geqslant a$	A1	SC1 $x^2 + 6x - a \ge 0$ oe ine	equality	
		AI	(may be seen in working lir	nes)	
	Additional Guidance				
	Alt 1				
	2nd M1 Any inequality symbol or = allowed				
	3rd M1 Only the inequality symbols shown are allowed (do not allow =)				
	Allow $(x + 3)(x + 3)$ for $(x + 3)^2$				

Q	Answer	Mark	Comments
	Alternative method 1		
	Shows substitution of a value of $x < -2$ into $\frac{dy}{dx}$ and shows substitution of a value of $x > -2$ into $\frac{dy}{dx}$	M1	eg $(-3+2)^{6} + (-3+2)^{4}$ and $(-1+2)^{6} + (-1+2)^{4}$ allow $(-1)^{6} + (-1)^{4}$ with x = -3 stated and $(1)^{6} + (1)^{4}$ with x = -1 stated
27	Evaluates both correctly or states that each is positive with M1 seen	M1dep	eg $(-3 + 2)^{6} + (-3 + 2)^{4} = 2$ and $(-1 + 2)^{6} + (-1 + 2)^{4} = 2$ allow $(-1)^{6} + (-1)^{4} = 2$ with $x = -3$ stated and $(1)^{6} + (1)^{4} = 2$ with $x = -1$ stated
	Statement with M2 seen	A1	eg either side of $P \frac{dy}{dx} > 0$ with M2 seen SC2 states two values of x (one < -2 and one > -2) and shows the correct value of $\frac{dy}{dx}$ for each and makes a statement SC1 states two values of x (one < -2 and one > -2) and shows the correct value of $\frac{dy}{dx}$ for each

Mark scheme and Additional Guidance continue on the next three pages

Q	Answer	Mark	Comments
			·
	Alternative method 2		
	$x < -2$ and $(-)^{6} + (-)^{4}$		allow without brackets
	and	M1	allow less than for $<$ etc
	$x > -2$ and $(+)^{6} + (+)^{4}$		
	$x < -2$ and $(-)^{6} + (-)^{4} > 0$		allow without brackets
	and	M1dep	allow = + for > 0
	$x > -2$ and $(+)^6 + (+)^4 > 0$		
27 cont	Statement with M2 seen		eg either side of $P \frac{dy}{dx} > 0$ with M2 seen
			SC2 states two values of x (one < -2 and one > -2)
			and shows the correct value of $\frac{dy}{dx}$ for
		A1	each and makes a statement
			SC1 states two values of x (one < -2 and one > -2)
			and shows the correct value of $\frac{dy}{dx}$ for
			each

Additional Guidance is on the next two pages

Q	Answer	Mark	Comments		
	Ad	ditional G	uidance		
	For A1 a clear statement is needed aft	er M2 scor	ed		
	Examples of acceptable statements wi	th M2 seer	1		
	eg1 For $x < -2$ gradient is + and for :	x > -2 grad	dient is +		
	eg2 To the left of $P = m > 0$				
	To the right of $P \mathrm{m} > 0$				
	eg3 (When both of their substitutions	correctly ev	valuate to the same value)		
	They are the same positive value				
	eg4 Both gradients are the same sign	1			
	eg5 m is + both times				
	eg6 Gradient is always positive (apar				
	eg7 Function (or curve) is increasing				
	Allow a statement to be made using a	diagram wi	ith M2 seen		
	eg accept for eg2 above $m > 0$		P m > 0		
	m > 0 or $m > 0$				
	m > 0 / P	/			
	Allow a statement to be made using a table with M2 seen				
	eg accept for eg l above -3 –	2 –1			
	+ 0 +				
	When both of their substitutions correctly evaluate to the same positive value condone for the statement with M2 seen Gradients are the same (implies both positive) Do not accept for the statement eg1 Gradient is increasing				
	eg2 m is positive				
	eg3 Gradient is positive				
	eg4 P is a point of inflection				

Additional Guidance continues on the next page

Q	Answer	Mark	Comments	
	Allow gradient or m for $\frac{dy}{dx}$ For evaluations allow rounding or true Ignore higher derivatives Ignore substitution of $x = -2$	Additional Guidan		
27 cont	x = -3gradient = 2 $x = -1$ gradient = 2either side of P gradient > 0		SC2	
	$ \begin{array}{ c c c } \hline -3 & -2 & -1 \\ \hline 2 & 0 & 2 \end{array} $ gradient is positive both times		SC2	
	$ \begin{array}{ c c c c } \hline -3 & -2 & -1 \\ \hline 2 & 0 & 2 \\ \hline \end{array} $			