AQA

Please write clearly in block capitals.

Centre number
 Candidate number

Surname \qquad
Forename(s) \qquad
Candidate signature

A-level

CHEMISTRY

Paper 1 Inorganic and Physical Chemistry

Tuesday 4 June 2019

Afternoon
Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

Table 1 gives values of some standard enthalpy changes.

Table 1

Name of enthalpy change	$\Delta \boldsymbol{H}^{\circ} / \mathbf{k J ~ m o l}^{-1}$
Enthalpy of atomisation of caesium	+79
First ionisation energy of caesium	+376
Electron affinity of iodine	-314
Enthalpy of lattice formation of caesium iodide	-585
Enthalpy of formation of caesium iodide	-337

0	1	1
1	Complete Figure 1 by writing the formulas, including state symbols, of the appropriate	

 atomisation of iodine.
\qquad $\mathrm{kJ} \mathrm{mol}^{-1}$

| $\mathbf{0}$ | $\mathbf{1}$ | .3 |
| :--- | :--- | :--- | The enthalpy of lattice formation for caesium iodide in Table $\mathbf{1}$ is a value obtained by experiment. The value obtained by calculation using the perfect ionic model is $-582 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Deduce what these values indicate about the bonding in caesium iodide.

\qquad
\qquad

| 0 | $\mathbf{1}$ | .4 |
| :--- | :--- | :--- | Use data from Table 2 to show that this reaction is not feasible at 298 K

$$
\mathrm{CsI}(\mathrm{~s}) \rightarrow \mathrm{Cs}(\mathrm{~s})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~s}) \quad \Delta H^{\ominus}=+337 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Table 2

	$\mathbf{C s l}(\mathbf{s})$	$\mathbf{C s}(\mathbf{s})$	$\mathbf{I}_{\mathbf{2}}(\mathbf{s})$
$\mathrm{S}^{\circ} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$	130	82.8	117

| $\mathbf{0}$ | $\mathbf{2}$ Time of flight (TOF) mass spectrometry can be used to analyse large molecules such |
| :--- | :--- | as the pentapeptide, leucine encephalin (\mathbf{P}).

\mathbf{P} is ionised by electrospray ionisation and its mass spectrum is shown in Figure 2.
Figure 2

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$
Describe the process of electrospray ionisation.		

Give an equation to represent the ionisation of \mathbf{P} in this process.

Description
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Equation
\qquad

| $\mathbf{0}$ | $\mathbf{2} . \mathbf{2}$ What is the relative molecular mass of \mathbf{P} ? |
| :--- | :--- | :--- |

Tick (\checkmark) one box.

555

556

557

The \mathbf{Q}^{+}ion has a kinetic energy of $2.09 \times 10^{-15} \mathrm{~J}$
This ion takes $1.23 \times 10^{-5} \mathrm{~s}$ to reach the detector.
The length of the flight tube is 1.50 m
Calculate the relative molecular mass of \mathbf{Q}.
$K E=\frac{1}{2} m v^{2} \quad$ where $m=\operatorname{mass}(\mathrm{kg})$ and $v=\operatorname{speed}\left(\mathrm{m} \mathrm{s}^{-1}\right)$
The Avogadro constant, $L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

0	3	This question is about periodicity, the Period 4 elements and their compounds.

0	3	1

\qquad
\qquad
\qquad

0	3	2

\qquad

$\mathbf{0}$	$\mathbf{3}$	$\mathbf{3}$	Identify the element in Period 4 with the largest atomic radius.

Explain your answer.

Element
Explanation \qquad
\qquad
\qquad
\qquad

0	$\mathbf{3} .4$	$\mathbf{4}$ The equations for two reactions of arsenic(III) oxide are shown.

$$
\begin{gathered}
\mathrm{As}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AsCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{As}_{2} \mathrm{O}_{3}+6 \mathrm{NaOH} \rightarrow 2 \mathrm{Na}_{3} \mathrm{AsO}_{3}+3 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Name the property of arsenic(III) oxide that describes its ability to react in these two ways.
\qquad

$\mathbf{0}$	$\mathbf{3}$	$\mathbf{5}$ Complete the equation for the formation of arsenic hydride.

$\mathrm{As}_{2} \mathrm{O}_{3}+$
$\mathrm{Zn}+$
$\mathrm{HNO}_{3} \rightarrow$
$\mathrm{AsH}_{3}+\quad \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\quad \mathrm{H}_{2} \mathrm{O}$
$\mathrm{AsH}_{3}+\quad \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\quad \mathrm{H}_{2} \mathrm{O}$

$\mathbf{0}$	$\mathbf{4}$	Figure $\mathbf{3}$ shows some reactions of aqueous iron ions.

Figure 3

$\mathbf{0}$	$\mathbf{4}$.	$\mathbf{1}$

Give an equation for Reaction 1.

Formula of \mathbf{J} \qquad
Colour
Equation
\qquad

| $\mathbf{0}$ | $\mathbf{4} \cdot \mathbf{2}$ Give the formula of L and an equation for Reaction 2. |
| :--- | :--- | :--- |

Formula of \mathbf{L} \qquad
Equation
\qquad

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{3}$ Suggest a reagent for Reaction 3.

\qquad

| 0 | $\mathbf{4}$ | .4 |
| :--- | :--- | :--- | Give the formula of Precipitate \mathbf{M} and state its colour.

Formula of \mathbf{M}
Colour

$\mathbf{0}$	$\mathbf{4}$.5	Transition metal complexes have different shapes and many show isomerism.

Describe the different shapes of complexes and show how they lead to different types of isomerism.
Use examples of complexes of cobalt(II) and platinum(II).
You should draw the structures of the examples chosen.
\qquad

$\mathbf{0}$	$\mathbf{5}$	This question is about some Group 7 compounds.

0	5	1	Solid sodium chloride reacts with concentrated sulfuric acid.

Give an equation for this reaction.
State the role of the sulfuric acid in this reaction.

Equation
\qquad
Role

| $\mathbf{0}$ | $\mathbf{5}$. | $\mathbf{2}$ Fumes of sulfur dioxide are formed when sodium bromide reacts with |
| :--- | :--- | :--- | :--- | concentrated sulfuric acid.

For this reaction

- give an equation
- give one other observation
- state the role of the sulfuric acid.

Equation
\qquad
Observation \qquad
\qquad
Role

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{3}$	Chlorine reacts with hot aqueous sodium hydroxide as shown in the equation.

$$
3 \mathrm{Cl}_{2}+6 \mathrm{NaOH} \rightarrow \mathrm{NaClO}_{3}+5 \mathrm{NaCl}+3 \mathrm{H}_{2} \mathrm{O}
$$

Give the oxidation state of chlorine in NaClO_{3} and in NaCl
NaClO_{3}
NaCl
\qquad
\qquad

$\mathbf{0}$	$\mathbf{5} .4$	$\mathbf{4}$ State, in terms of redox, what happens to chlorine in the reaction in Question 05.3.

$\begin{array}{llll}0 & 5 & 5 & \text { Solution } \mathbf{Y} \text { contains two different negative ions. }\end{array}$
To a sample of solution \mathbf{Y} in a test tube a student adds

- silver nitrate solution
- then an excess of dilute nitric acid
- finally an excess of concentrated ammonia solution.

The observations after each addition are recorded in Table 3.

Table 3

Reagent added to solution \mathbf{Y}	Observation
silver nitrate solution	cream precipitate containing compound \mathbf{D} and compound \mathbf{E}
excess dilute nitric acid	cream precipitate \mathbf{D} and bubbles of gas \mathbf{F}
excess concentrated ammonia solution	colourless solution containing complex ion \mathbf{G}

Give the formulas of \mathbf{D}, \mathbf{E} and \mathbf{F}.
Give an ionic equation to show the formation of \mathbf{E}.
Give an equation to show the conversion of \mathbf{D} into \mathbf{G}.

Formula of \mathbf{D}
Formula of E
Formula of F
Ionic equation to form \mathbf{E}

Equation to show the conversion of \mathbf{D} into \mathbf{G}

The student

- reacts 985 mg of the alloy with concentrated nitric acid to form a solution (all of the copper in the alloy reacts to form aqueous copper(II) ions)
- pours the solution into a volumetric flask and makes the volume up to $250 \mathrm{~cm}^{3}$ with distilled water
- shakes the flask thoroughly
- transfers $25.0 \mathrm{~cm}^{3}$ of the solution into a conical flask and adds an excess of potassium iodide
- uses exactly $9.00 \mathrm{~cm}^{3}$ of $0.0800 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium thiosulfate $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ solution to react with all the iodine produced.
The equations for the reactions are

$$
\begin{gathered}
2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \rightarrow 2 \mathrm{CuI}+\mathrm{I}_{2} \\
2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}
\end{gathered}
$$

0	6	1

Give your answer to the appropriate number of significant figures.

$\mathbf{0}$	$\mathbf{6} . \mathbf{2}$	Suggest two ways that the student could reduce the percentage uncertainty in the measurement of the volume of sodium thiosulfate solution, using the same apparatus as this experiment.
[2 marks]		

$\mathbf{0}$	$\mathbf{6}$	$\mathbf{3}$	$\mathbf{3}$

\qquad

$\mathbf{0}$	$\mathbf{6}$	$\mathbf{4}$ Give the full electron configuration of a copper(II) ion.

\qquad

$\mathbf{0}$	$\mathbf{6}$	$\mathbf{5}$ Copper(I) iodide is a white solid.

Explain why copper (I) iodide is white.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6 continues on the next page

0	6	6	lodine vaporises easily.

Calculate the volume, in cm^{3}, that 5.00 g of iodine vapour occupies at $185^{\circ} \mathrm{C}$ and 100 kPa

The gas constant $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Give your answer to 3 significant figures.
 sulfur dioxide and oxygen.

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

| 0 | $\mathbf{7}$ | . 1 A sample of sulfur trioxide was heated and allowed to reach equilibrium at a given |
| :--- | :--- | :--- | :--- | temperature.

The equilibrium mixture contained 6.08 g of sulfur dioxide.
Calculate the mass, in g , of oxygen gas in the equilibrium mixture.

Question 7 continues on the next page

| 0 | $\mathbf{7}$ | $\mathbf{2}$ A different mass of sulfur trioxide was heated and allowed to reach equilibrium |
| :--- | :--- | :--- | at 1050 K

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

The amounts of each substance in the equilibrium mixture are shown in Table 4.
Table 4

Substance	Amount at equilibrium / mol
sulfur trioxide	0.320
sulfur dioxide	1.20
oxygen	0.600

For this reaction at 1050 K the equilibrium constant, $K_{\mathrm{p}}=7.62 \times 10^{5} \mathrm{~Pa}$
Calculate the mole fraction of each substance at equilibrium.
Give the expression for the equilibrium constant, K_{p}
Calculate the total pressure, in Pa , of this equilibrium mixture.

Mole fraction SO_{3}
Mole fraction SO_{2}
Mole fraction O_{2} \qquad
$K_{\text {p }}$

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{3}$ For this reaction at 1050 K the equilibrium constant, $K_{\mathrm{p}}=7.62 \times 10^{5} \mathrm{~Pa}, ~$ |
| :--- | :--- | :--- | For this reaction at 500 K the equilibrium constant, $K_{p}=3.94 \times 10^{4} \mathrm{~Pa}$

Explain how this information can be used to deduce that the forward reaction is endothermic.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | 7 | 4 | Use data from Question 07.3 to calculate the value of K_{p}, at 500 K , for the equilibrium |
| :--- | :--- | :--- | :--- | represented by this equation. Deduce the units of K_{p}

$$
\mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
$$

$K_{\text {p }}$ \qquad
Units \qquad

Turn over for the next question

0	8.	1
Draw a diagram to show the strongest type of interaction between two molecules of		

Include all lone pairs and partial charges in your diagram.

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{2}$ Methoxymethane $\left(\mathrm{CH}_{3} \mathrm{OCH}_{3}\right)$ is an isomer of ethanol.

Table 5 shows the boiling points of ethanol and methoxymethane.

Table 5

Compound	Boiling point $/{ }^{\circ} \mathbf{C}$
ethanol	78
methoxymethane	-24

In terms of the intermolecular forces involved, explain the difference in boiling points.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

| $\mathbf{0}$ | $\mathbf{9} \quad$ This question is about different pH values. |
| :--- | :--- | :--- |

| 0 | 9 | 1 |
| :--- | :--- | :--- | For pure water at $40^{\circ} \mathrm{C}, \mathrm{pH}=6.67$

A student thought that the water was acidic.
Explain why the student was incorrect.
Determine the value of K_{w} at this temperature.

Explanation
Explanion
\qquad
K_{w} \qquad $\mathrm{mol}^{2} \mathrm{dm}^{-6}$
 $0.080 \mathrm{~mol} \mathrm{dm}^{-3}$ propanoic acid at $25^{\circ} \mathrm{C}$ The pH was measured and recorded at regular intervals.

The results are shown in Figure 4.
Figure 4

Use Figure 4 to determine the value of K_{a} for propanoic acid at $25^{\circ} \mathrm{C}$ Show your working.
\qquad $\mathrm{mol} \mathrm{dm}^{-3}$

| 0 | 9 | 3 |
| :--- | :--- | :--- | Tick (\checkmark) one box.

Indicator	pH range	Tick (\checkmark) one box
methyl orange	$3.1-4.4$	
bromothymol blue	$6.0-7.6$	
cresolphthalein	$8.2-9.8$	
indigo carmine	$11.6-13.0$	

Question 9 continues on the next page

| 0 | $\mathbf{9}$ | .4 | A student prepared a buffer solution by adding 0.0136 mol of a salt KX to |
| :--- | :--- | :--- | :--- | $100 \mathrm{~cm}^{3}$ of a $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of a weak acid HX and mixing thoroughly.

The student then added $3.00 \times 10^{-4} \mathrm{~mol}$ of potassium hydroxide to the buffer solution.
Calculate the pH of the buffer solution after adding the potassium hydroxide.
For the weak acid HX at $25^{\circ} \mathrm{C}$ the value of the acid dissociation constant, $K_{\mathrm{a}}=1.41 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$.

Give your answer to two decimal places.

Use a mathematical expression to explain this.

END OF QUESTIONS

Do not write

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

