Edexcel

Mark Scheme (Results)

January 2021

Pearson Edexcel International GCSE In Mathematics B (4MB1)
Paper 02R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021
Publications Code 4MB1_02R_2021_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

- Abbreviations

- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC-special case
- oe - or equivalent (and appropriate)
dep - dependent
indep - independent
awrt - answer which rounds to
eeoo - each error or omission
- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If the final answer is wrong always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255 ; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.
If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes clear the method that has been used.
If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Question		Working	Answer		Notes	
1	(a)		Correct Venn diagram	3	B3 all regions (incl B2 for at least th B1 for two (non Repeated values do (eg. if region $A \bigcap B$ $\mathrm{A}^{\prime} \bigcap \mathrm{B} \bigcap \mathrm{C}^{\prime}$ contain considered correct	ding empty regions) correct ee (non-empty) regions correct, mpty) regions correct ot gain additional penalties C^{\prime} contains 8 and region 8 and 16. The first would be d the second incorrect)
	(b)		6, 12, 24	1	B1 correct or ft thei brackets eg. \{6,12,2	Venn diagram - accept in any \}
	(c)		$\begin{gathered} 10,14,20,22, \\ 26,28 \\ \hline \end{gathered}$	1	B1 correct or ft thei brackets eg, \{10, 14	Venn diagram - accept in any $20,22,26,28\}$
	(d)		8	1	B1 correct or ft their Venn diagram	SC (d) $10,14,18,20,22,26,28,30$
	(e)		6	1	B1 correct or ft their Venn diagram	(e) $6,8,12,18,24,30$ ft their Venn diagram scores B0B1
	(f)	$\frac{2}{\text { their } n}$			M1 where n is 13 or may be seen in work	the number of elements in their \mathcal{E}, ng
			$\frac{2}{13}$	2	A1 oe cao	
						Total 9 marks

2	(a)	675×1.2 or $675+0.2 \times 675$			M1 complete method to increase by 20%
			(\$)810	2	A1
	(b)	$\frac{19}{19+16} \times 385$			$\text { M1 oe e.g. } \frac{385}{19+16} \times 19$
			209	2	A1
	(c)	"209"×8.50+(385-"209") $\times 4.50$			M1
			(\$)2568.50	2	A1 allow (\$)2568.5
	(d)	$\begin{aligned} & \frac{" 2568.50 "-2 \times " 675 "}{2 \times " 675 "} \times 100 \text { or } \\ & \frac{" 2568.50 "}{2 \times " 675 "} \times 100-100 \end{aligned}$			M1 complete method to find \% profit.
			90.3(\%)	2	A1 allow awrt 90.3
					Total 8 marks

3	(a)		$\begin{gathered} \hline 1.36,-0.27, \\ 2.23 \\ \hline \end{gathered}$	2	B2 awrt. Penalise rounding to 1dp once only. (-1eeoo)
	(b)	Plots 9 points with at least 6 correct ± 1 small square		3	M1 Attempts to plot the 9 points with at least 6 correct ± 1 small square. (Allow if curve goes through the points)
		Draws a smooth curve through at least 6 points			M1 drawing a smooth curve through at least 6 of their points. Do not allow if they use straight lines. Allow ± 1 small square from their point.
			Fully correct curve		A1 A fully correct curve. All Points plotted correctly with a smooth curve through all the points.
	(c)		-0.36 to -0.55	1	B1ft (answer must be consistent with their graph) Condone value given as a coordinate with an x ordinate of $-1.4 \leq x<-1.2$
					Total 6 marks

4	(a)		$\frac{1}{3}$	1	B1 (oe e.g. $\frac{2}{6}$) Accept 0.33 or better
	(b)	$\frac{4}{6} \times \frac{3}{5}$			M1
	(c)	$2\left(\frac{1}{6} \times \frac{1}{5}\right)+2\left(\frac{2}{6} \times \frac{1}{5}\right)$		A1 (oe)	

5	(a)	$\mathrm{BD}^{2}=10.6^{2}+9.2^{2}-2(10.6)(9.2) \cos 65$			M1 Any correct method to find BD or BD^{2} allow once a correct equation in BD is formed
			10.7 (cm)	2	A1 awrt 10.7
	(b)		Opposite angles in a cyclic quadrilateral sum to 180°	1	B1 (minimum reasoning shown in bold)
	(c)	$\frac{\mathrm{BC}}{\sin 31}=\frac{" 10.7 "}{\sin 115}$			M1 Any correct method to find BC allow once a correct equation in BC is formed
			6.08 (cm)	2	A1 awrt 6.08
	(d)	Area of $\Delta \mathrm{BDC}=\frac{1}{2} \times " 10.7 " \times " 6.08 " \sin 34(=18.2)$			M1 Any correct method to find area of \triangle BDC
		$\begin{aligned} & \text { Height of } \triangle \mathrm{BDE}, \mathrm{~h}=\frac{0.5 \times " 10.7 "}{\tan 32.5}(=8.40) \\ & \text { or } \frac{" 10.7 "}{\sin 65}=\frac{\mathrm{BE}}{\sin 57.5} \\ & \text { Or } \\ & " 10.7^{2}=\mathrm{BE}^{2}+\mathrm{BE}^{2}-2 \times \mathrm{BE} \times \mathrm{BE} \times \cos 65 \end{aligned}$			M1 Any correct method to find the height of $\triangle \mathrm{BDE}$ or BE or $\mathrm{DE}(\mathrm{BE}=\mathrm{DE}=9.96)$
		$\begin{aligned} & \text { Area of } \triangle \mathrm{BDE}=\frac{1}{2} \times " 10.7 " \times " 8.40 " \text { or } \\ & \text { Area of } \triangle \mathrm{BDE}=\frac{1}{2} \times(" 9.96 ")^{2} \times \sin 65 \end{aligned}$			M1dep (dependent on previous M mark) using their h and BD or their BE or DE (for reference: $=44.960 \ldots$)
			$63.2\left(\mathrm{~cm}^{2}\right)$	4	A1 awrt 63.1 or 63.2
					Total 9 marks

6	(a)(i)		7		B1
	(ii)		-2	2	B1
	(b)		$\mathrm{g}(\mathrm{x}) \geq-2$	1	B1 Accept $\mathrm{y} \geq-2, \mathrm{~g} \geq-2,[-2, \infty)$ or $[-2, \infty[$
	(c)		$(3 x+1)^{2}-2$	1	B1 oe ISW if expanded
	(d)	$2 \mathrm{x}-1=\mathrm{x}+3$			M1 Correct equation with fraction removed
			$\mathrm{x}=4$	2	A1
	(e)(i)	$\begin{aligned} & \mathrm{y}(\mathrm{x}+3)=2 \mathrm{x}-1 \text { or } \mathrm{x}(\mathrm{y}+3)=2 \mathrm{y}-1 \text { or } \\ & \mathrm{y}=2-\frac{7}{\mathrm{x}+3} \text { or } \mathrm{x}=2-\frac{7}{\mathrm{y}+3} \end{aligned}$			M1 for removing fraction (oe)
		$\begin{aligned} & \mathrm{x}(2-\mathrm{y})=1+3 \mathrm{y} \text { or } \mathrm{y}(2-\mathrm{x})=1+3 \mathrm{x} \text { or } \\ & \mathrm{x}+3=\frac{7}{2-\mathrm{y}} \text { or } \mathrm{y}+3=\frac{7}{2-\mathrm{x}} \end{aligned}$			M1dep for collecting terms in x and factorising allow one slip
			$\left(\mathrm{h}^{-1}: \mathrm{x} \mapsto\right) \frac{1+3 \mathrm{x}}{2-\mathrm{x}}$		A1 oe (must be in terms of x) Accept $\frac{7}{2-\mathrm{x}}-3$
	(ii)		2	4	B1ft - follow through their inverse provided of the form $\frac{a x+b}{c x+d}$ or $a+\frac{b}{c x+d}$ for non-zero $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d

| (f) | $\mathrm{fh}^{-1}(1)=\mathrm{f}(4)(=13)$ | | M 1 for correct order of operations to find their
 fh | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $3 \mathrm{p}+1= \pm \sqrt{\frac{21}{4}}$ or may be embedded within working
 $(\mathrm{p}=) \frac{-24 \pm \sqrt{24^{2}-4 \times 36 \times-17}}{2 \times 36}$ | | M1dep - correct order of operations to find p
 or correct formations of quadratic trinomial
 $\left(36 \mathrm{p}^{2}+24 \mathrm{p}-17(=0)\right)$ and substitution into a
 correct formula
 ft their gf as long as this is a quadratic
 trinomial (eg. Do not $\left.\mathrm{ft} \mathrm{gf}(\mathrm{x})=9 \mathrm{x}^{2}-1\right)$ | |
| | | $\mathrm{p}=\frac{-2 \pm \sqrt{21}}{6}$ | 3 | A1 (oe exact) |
| | | | | Total 13 marks |

7	(a)		Triangle A drawn correctly	1	B1 Don't penalise missing labels in any part of this question.
	(b)	$\left(\begin{array}{cc}3 & \frac{1}{2} \\ -1 & -\frac{1}{2}\end{array}\right)\left(\begin{array}{ccc}2 & 5 & 4 \\ 2 & 2 & -1\end{array}\right)$			M1 for correct matrix multiplication with at least one correct coordinate or two correct coordinates found or one correct coordinate plotted.
			Triangle B drawn correctly	2	A1 For reference coordinates are $(7,-3),(16,-6),(11.5,-3.5)$
	(c)	$\left(\begin{array}{cc}\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)\left(\begin{array}{ccc}7 & 16 & 11.5 \\ -3 & -6 & -3.5\end{array}\right)$			M1 ft for correct matrix multiplication with at least one correct coordinate or two correct coordinates found or one correct coordinate plotted. (following through their answer to (b))
			Triangle C drawn correctly	2	A1 cao For reference coordinates are $(5,2),(11,5),(7.5,4)$
	(d)	$\frac{1}{\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)-\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2}\end{array}\right)$ or 2 equations from each set of 3 $\begin{aligned} & 5 \mathrm{a}+2 \mathrm{~b}=7,11 \mathrm{a}+5 \mathrm{~b}=16,7.5 \mathrm{a}+4 \mathrm{~b}=11.5 \\ & 5 \mathrm{c}+2 \mathrm{~d}=-3,11 \mathrm{c}+5 \mathrm{~d}=-6,7.5 \mathrm{c}+4 \mathrm{~d}=-3.5 \end{aligned}$			M1 for attempt at \mathbf{N}^{-1} with either correct determinant or correct elements in 2 by 2 matrix or sufficient linear equations to find the terms of the matrix \mathbf{N}^{-1} seen.
			$\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$	2	A1 oe do not ISW

(e)	$\mathbf{Q}=\mathbf{N M}=\left(\begin{array}{cc}\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)\left(\begin{array}{cc}3 & \frac{1}{2} \\ -1 & -\frac{1}{2}\end{array}\right)$ or 2 equations from each set of 3 $2 \mathrm{a}+2 \mathrm{~b}=5,5 \mathrm{a}+2 \mathrm{~b}=11,4 \mathrm{a}-\mathrm{b}=7.5$ $2 \mathrm{c}+2 \mathrm{~d}=2,5 \mathrm{c}+2 \mathrm{~d}=5,4 \mathrm{c}-\mathrm{d}=4$	M1 Matrix multiplication seen, must be in the correct order or sufficient linear equations to find the terms of the matrix \mathbf{Q} seen.		
		$\left(\begin{array}{cc}2 & \frac{1}{2} \\ 1 & 0\end{array}\right)$	2	A1 oe

8	(a)	[Volume of ACDFGHJK =] $3 \mathrm{x} \times 2 \mathrm{x} \times(\mathrm{x}-2)\left[=6 \mathrm{x}^{3}-12 \mathrm{x}^{2}\right]$ or [Area of $\mathrm{ABC}=] \frac{1}{2} \times \mathrm{x} \times 2 \mathrm{x}\left[=\mathrm{x}^{2}\right]$ or [Half Area of ABCJH $=$] $\frac{1}{2} \times 3 \mathrm{x}+4 \mathrm{x} \times \mathrm{x}\left[=\frac{7}{2} \mathrm{x}^{2}\right]$			M1 correct expression for the volume of ACDFGHJK or the area of ABC or half the area of ABCJH
		[Volume of ABCDEF =] $\frac{1}{2} \mathrm{x} \times 2 \mathrm{x} \times(\mathrm{x}-2)\left[=\mathrm{x}^{3}-2 \mathrm{x}^{2}\right]$ or [Area of $\mathrm{ABCJH}=] \frac{1}{2} \times \mathrm{x} \times 2 \mathrm{x}+2 \mathrm{x} \times 3 \mathrm{x}\left[=7 \mathrm{x}^{2}\right]$ or [Area of $\mathrm{ABCJH}=$] $2 \times \frac{1}{2} \times 3 \mathrm{x}+4 \mathrm{x} \times \mathrm{x}\left[=7 \mathrm{x}^{2}\right]$			M1 correct expression for the volume of ABCDEF or the area of ABCJH
		$\begin{aligned} & 3 x(2 x)(x-2)+\frac{1}{2} x(2 x)(x-2)=1008 \text { or } \\ & \left(\frac{1}{2} \times x \times 2 x+2 x \times 3 x\right) \times(x-2)=1008 \text { or } \\ & \left(2 \times \frac{1}{2} \times 3 x+4 x \times x\right) \times x-2=1008 \end{aligned}$			M1 dep on both previous M marks
		$\begin{aligned} & 6 \mathrm{x}^{2}(\mathrm{x}-2)+\mathrm{x}^{2}(\mathrm{x}-2)=1008 \\ & \Rightarrow 6 \mathrm{x}^{3}-12 \mathrm{x}^{2}+\mathrm{x}^{3}-2 \mathrm{x}^{2}=1008 \\ & \Rightarrow 7 \mathrm{x}^{3}-14 \mathrm{x}^{2}-1008=0 \end{aligned}$	$\mathrm{x}^{3}-2 \mathrm{x}^{2}-144=0$	4	A1 - note that AG so sufficient working must be shown Must see all M marks and at least additional stage towards the final answer.
	(b)	$6^{3}-2(6)^{2}-144$		2	M1 (M0 if long division used)
			$6^{3}-2(6)^{2}-144=0$		A1 - must have $=0$

	(c)(i)	$(\mathrm{x}-6)\left(\mathrm{x}^{2}+4 \mathrm{x}+24\right)$	
		$(\mathrm{x}-6)\left(\mathrm{x}^{2}+4 \mathrm{x}+24\right)$	$\mathrm{p}=1, \mathrm{q}=4, \mathrm{r}=24$
	(c)(ii)	$(\mathrm{x}+2)^{2}+20=0$ or $(\mathrm{x}=) \frac{-4 \pm \sqrt{4^{2}-4(1)(24)}}{2}$ $(\Delta=) 4^{2}-4(1)(24)[=-80]$	
			$\mathrm{f}(\mathrm{x})=0$ has only one solution with a reason why quadratic has no real roots

4 M1 Any two terms of the quadratic correct
A1 Accept correct quadratic factor given
M1 for correct first step for solving quadratic for x or considering discriminant.
FT their quadratic found in (i)
A1 - note that answer given so sufficient working must be shown
Must correctly evaluate discriminant (-80) and refer to sign or correctly show solving involves square rooting a negative.

Total 10 marks

9	$y=x\left(2 x^{2}+x-6\right)=2 x^{3}+x^{2}-6 x$			M1 for attempt to expand (allow one error)
	Attempt to differentiate			M1 for at least two terms of their y differentiated correctly
	$\frac{d y}{d x}=6 x^{2}+2 x-6$			A1
	" $6 a^{2}+2 a-6 " \geq-2$			M1 dep on first 2 M marks for setting up suitable inequality. Allow > sign rather than \geqslant May be implied by the final method mark.
	$\begin{aligned} & (3 \mathrm{a}-2)(\mathrm{a}+1) \geq 0 \\ & \Rightarrow \text { c.v. } \frac{2}{3},-1 \end{aligned}$			M1 indep. attempt to solve their three-term quadratic allow any trinomial inequality or equation seen. Factorising must expand to give two terms of their quadratic. Formula substitution into correct formula attempted (either correct expression seen or correct formula seen and an expression with a maximum of one error seen,
				M1 for $a \geq b, a \leq c$ with their critical values b, c where $\mathrm{b}>\mathrm{c}$ (choosing the outside region) Allow > sign rather than \geqslant
		$\mathrm{a} \geq \frac{2}{3} \text { or } \mathrm{a} \leq-1$	7	A1 (oe) - condone x for a for full marks
				Total 7 marks

10	(a)(i)		$\frac{1}{2} \mathbf{a}$		B1
	(ii)		$\frac{2}{5} \mathbf{c}$	2	B1
	(b)	$(\overrightarrow{\mathrm{OX}}=) \lambda\left(\mathbf{a}+\frac{2}{5} \mathbf{c}{ }^{\prime \prime}\right)$			M1 ft their $\overrightarrow{\mathrm{AD}}$
		$(\overrightarrow{\mathrm{AX}}=) \mu\left(\mathbf{c}-\frac{1}{2} \mathbf{a}\right)$			M1 ft their $\overrightarrow{\mathrm{CF}} \mu\left(\mathbf{c}+\mathbf{a}-\underline{\left.\frac{1}{2} \mathbf{a} "\right)}\right.$
		$(\overrightarrow{\mathrm{OX}}=) \mathbf{a}+\mu\left(\mathbf{c}-\frac{1}{2} \mathbf{a}\right)$ or using $\overrightarrow{\mathrm{OX}}-\overrightarrow{\mathrm{AX}}=\overrightarrow{\mathrm{OA}}$ to set up an equation with λ and μ			M1
		$" \lambda\left(\mathbf{a}+\frac{2}{5} \mathbf{c}\right) "=" \mathbf{a}+\mu\left(\mathbf{c}-\frac{1}{2} \mathbf{a}\right) "$			M1 oe correct vector equations following through their answers in (a)
		$\lambda=1-\frac{1}{2} \mu$ and $\frac{2}{5} \lambda=\mu$			M1 dep on previous mark for comparing components of \mathbf{a} and \mathbf{c}
		$\frac{2}{5}\left(1-\frac{1}{2} \mu\right)=\mu$ or $\lambda=1-\frac{1}{2}\left(\frac{2}{5} \lambda\right)$ oe			M1 for attempt to solve for μ or λ Award for an equation in one variable that follows from their comparison of components.
			$\mu=\frac{1}{3}, \lambda=\frac{5}{6}$	7	A1
	(c)	$\overrightarrow{\mathrm{OX}}=\frac{5}{6} \overrightarrow{\mathrm{OD}}$	5	1	B1ft using their value of λ Accept 5:1 for the final answer.

(d)	$\|\mathbf{c}\|=12.5 \Rightarrow\|\overrightarrow{\mathrm{AD}}\|=5$		B1	
	Area of $\Delta \mathrm{OAD}=\frac{1}{2} \times 12 \times " 5 "[=30]$ or Area of $\Delta \mathrm{ADX}=\frac{1}{2} \times " 5 " \times\left(\frac{1}{6} \times 12\right)[=5]$ or $\frac{1}{2} \times \sin \left(\tan ^{-1}\left(\frac{6}{12.5}\right)\right) \times " 5 " \times " \frac{1}{3} " \times \sqrt{6^{2}+12.5^{2}}[=5]$		M1 Correct method to find area of triangle OAD or ADX	
	Area of $\Delta \mathrm{ADX}=\left(1-" \frac{5}{6} "\right) \times " 30 "[=5]$ and Area of $\Delta \mathrm{ABF}=\frac{1}{2} \times 12.5 \times 6[=37.5]$		M1 Correct method to find area of triangle ABF and ADX	
		$32.5\left(\mathrm{~cm}^{2}\right)$	4	A1

$\mathbf{1 1}$		[Length of rectangle $=] 72$	
		$[$ Area of circles $=] 6\left(\pi(12)^{2}\right)[=2714(4 \mathrm{sf})]$	
		$\left.\begin{array}{l}24^{2}-12^{2}\end{array}=20.8\right]$ or	
		$\sqrt{48^{2}-24^{2}}[=41.6]$ or	
$2 \times 12 \times \sin 60$ or $4 \times 12 \times \sin 60$			
		$2 \times 12+2 \times " 20.8 "[=65.6]$	
		$\frac{" 2714 "}{" 72 " \times " 65.6^{\prime \prime}} \times 100$	57.5%

6
B1 (May be seen within working)
B1 Accept 864π
M1 for finding the vertical distance between the centres of two circles on adjacent rows or between the top circle and the bottom row

M1dep for finding total height of the rectangle oe e.g. $2(12)+" 41.6$ " or $24+24 \sqrt{3}$ M1 dep
NB $72 \times 65.6=$ value between 4720 and 4724
A1 AG must see sufficient working to award all method marks their expression must evaluate to awrt 57.5

SC Misread diameter $=12 \mathrm{~cm}$ can gain B0B0M1M1M1A1					
		[Length of rectangle $=] 36$		6	B0
		[Area of circles $=] 6\left(\pi(6)^{2}\right)[=678.6(4 \mathrm{sf})$]			B0
		$\begin{aligned} & \sqrt{12^{2}-6^{2}}[=10.4] \text { or } \\ & \sqrt{24^{2}-12^{2}}[=20.8] \text { or } \\ & 2 \times 6 \times \sin 60 \text { or } 4 \times 6 \times \sin 60 \end{aligned}$			M1 for finding the vertical distance between the centres of two circles on adjacent rows or between the top circle and the bottom row
		$2 \times 6+2 \times 110.4 "[=32.8]$			M1dep for finding total height of the rectangle oe e.g. $2(6)+" 20.8$ " or $12+12 \sqrt{3}$
		$\frac{" 678.6^{\prime}}{-36 " \times " 32.8^{\prime \prime}} \times 100$			M1 dep NB $36 \times 32.8=$ value between 1180 and 1181
			57.5\%		A1 AG must see sufficient working to award all method marks their expression must evaluate to awrt 57.5
					Total 6 marks

Pearson Education Limited. Registered company number 872828

