-

Oxford Cambridge and RSA

A Level Mathematics B (MEI)
 H640/02 Pure Mathematics and Statistics Sample Question Paper

 Version 2

 Version 2}

Date - Morning/Afternoon

Time allowed: 2 hours

You must have:

- Printed Answer Booklet

You may use:

- a scientific or graphical calculator

INSTRUCTIONS

- Use black ink. HB pencil may be used for graphs and diagrams only.
- Complete the boxes provided on the Printed Answer Booklet with your name, centre number and candidate number.
- Answer all the questions.
- Write your answer to each question in the space provided in the Printed Answer Booklet. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Do not write in t e bar odes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION

- The total number of marks for this paper is $\mathbf{1 0 0}$.
- The marks for each question are shown in brackets [].
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is used. You should communicate your method with correct reasoning.
- The Printed Answer Book consists of $\mathbf{2 0}$ pages. The Question Paper consists of $\mathbf{1 6}$ pages.

Formulae A Level Mathematics B (MEI) H640

Arithmetic series

$S_{n}=\frac{1}{2} n(a+l)=\frac{1}{2} n\{2 a+(n-1) d\}$

Geometric series

$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$S_{\infty}=\frac{a}{1-r}$ for $|r|<1$

Binomial series

$(a+b)^{n}=a^{n}+{ }^{n} \mathrm{C}_{1} a^{n-1} b+{ }^{n} \mathrm{C}_{2} a^{n-2} b^{2}+\quad+{ }^{n} \mathrm{C}_{r} a^{n-r} b^{r}+\quad+b^{n} \quad(n \in)$,
where ${ }^{n} \mathrm{C}_{r}={ }_{n} \mathrm{C}_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!}$
$(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\quad+\frac{n(n-1)(n-r+1)}{r!} x^{r}+\quad(|x|<1, n \in)$

Differentiation

$\mathrm{f}(x)$	$\mathrm{f}(x)$
$\tan k x$	$k \sec k x$
$\sec x$	$\sec x \tan x$
$\cot x$	$-\operatorname{cosec}^{2} x$
$\operatorname{cosec} x$	$-\operatorname{cosec} x \cot x$

Quotient Rule $y=\frac{u}{v}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}$

Differentiation from first principles

$\mathrm{f}^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\mathrm{f}(x+h)-\mathrm{f}(x)}{h}$
Integration
$\int \frac{\mathrm{f}^{\prime}(x)}{\mathrm{f}(x)} \mathrm{d} x=\ln |\mathrm{f}(x)|+c$
$\int \mathrm{f}^{\prime}(x)(\mathrm{f}(x))^{n} \mathrm{~d} x=\frac{1}{n+1}(\mathrm{f}(x))^{n+1}+c$
Integration by parts $\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x$

Small angle approximations

$\sin \theta \approx \theta, \cos \theta \approx 1-\frac{1}{2} \theta^{2}, \tan \theta \approx \theta$ where θ is measured in radians

Trigonometric identities

$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
$\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \quad\left(A \pm B \neq\left(k+\frac{1}{2}\right) \pi\right)$

Numerical methods

Trapezium rule: $\int_{a}^{b} y \mathrm{~d} x \approx \frac{1}{2} h\left\{\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+\ldots+y_{n-1}\right)\right\}$, where $h=\frac{b-a}{n}$
The Newton-Raphson iteration for solving $\mathrm{f}(x)=0: x_{n+1}=x_{n}-\frac{\mathrm{f}\left(x_{n}\right)}{\mathrm{f}^{\prime}\left(x_{n}\right)}$

Probability

$\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
$\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B \mid A)=\mathrm{P}(B) \mathrm{P}(A \mid B) \quad$ or $\quad \mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$

Sample variance

$s^{2}=\frac{1}{n-1} S_{x x}$ where $S_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2}=\sum x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}=\sum x_{i}^{2}-n \bar{x}^{2}$
Standard deviation, $s=\sqrt{\text { variance }}$

The binomial distribution

If $X \sim \mathrm{~B}(n, p)$ then $P(X=r)={ }^{n} \mathrm{C}_{r} p^{r} q^{n-r}$ where $q=1-p$
Mean of X is $n p$

Hypothesis testing for the mean of a Normal distribution

If $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ then $\bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma}{n}\right)$ and $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathrm{~N}(0,1)$
Percentage points of the Normal distribution

p	10	5	2	1
z	1.645	1.960	2.326	2.576

Kinematics

Motion in a straight line
Motion in two dimensions

$$
\begin{aligned}
& v=u+a t \\
& s=u t+\frac{1}{2} a t^{2} \\
& s=\frac{1}{2}(u+v) t
\end{aligned}
$$

$$
v^{2}=u^{2}+2 a s
$$

$$
s=v t-\frac{1}{2} a t^{2}
$$

$$
\begin{aligned}
& \mathbf{v}=\mathbf{u}+\mathbf{a} t \\
& \mathbf{s}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2} \\
& \mathbf{s}=\frac{1}{2}(\mathbf{u}+\mathbf{v}) t \\
& \mathbf{s}=\mathbf{v} t-\frac{1}{2} \mathbf{a} t^{2}
\end{aligned}
$$

Answer all the questions.

Section A (23 marks)

1 In this question you must show detailed reasoning.

Find the coordinates of the points of intersection of the curve $y=x^{2}+x$ and the line $2 x+y=4$.

2 Given that $\mathrm{f}(x)=x^{3}$ and $\mathrm{g}(x)=2 x^{3}-1$, describe a sequence of two transformations which maps the curve $y=\mathrm{f}(x)$ onto the curve $y=\mathrm{g}(x)$.

3 Evaluate $\int_{0}^{\frac{\pi}{12}} \cos 3 x \mathrm{~d} x$, giving your answer in exact form.

4 The function $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=x^{3}-4$ for $-1 \leq x \leq 2$.
For $\mathrm{f}^{-1}(x)$, determine

- the domain
- the range.

5 In a particular country, 8% of the population has blue eyes. A random sample of 20 people is selected from this population.
Find the probability that exactly two of these people have blue eyes.

6 Each day, for many years, the maximum temperature in degrees Celsius at a particular location is recorded. The maximum temperatures for days in October can be modelled by a Normal distribution. The appropriate Normal curve is shown in Fig. 6.

Fig. 6
(a) (i) Use the model to write down the mean f the maximum temperatures.
(ii) Explain why the curve indicates th t th standard deviation is approximately 3 degrees Celsius.

Temperatures can be convert d from Celsius to Fahrenheit using the formula $F=1.8 C+32$, where F is the temp rature in deg ees Fahrenheit and C is the temperature in degrees Celsius.
(b) For maximum temper ture in October in degrees Fahrenheit, estimate

- the mean
- the standard deviation.

Answer all the questions.
Section B (77 marks)
$7 \quad$ Two events A and B are such that $\mathrm{P}(A)=0.6, \mathrm{P}(B)=0.5$ and $\mathrm{P}(A \cup B)=0.85$. Find $\mathrm{P}(A \mid B)$.

8 Alison selects 10 of her male friends. For each one she measures the distance between his eyes. The distances, measured in mm , are as follows:
$\begin{array}{llllllllll}51 & 57 & 58 & 59 & 61 & 64 & 64 & 65 & 67 & 68\end{array}$

The mean of these data is 61.4. The sample standard deviation is 5232 , correct to 3 decimal places.

One of the friends decides he does not want his measurement to be used. Alison replaces his measurement with the measurement from another mal friend This increases the mean to 62.0 and reduces the standard deviation.

Give a possible value for the measurement which has been removed and find the measurement which has replaced it.

9 A geyser is a hot spring which erup s from time to time. For two geysers, the duration of each eruption, x minutes, and the waiting time until the next eruption, y minutes, are recorded.
(a) For a random sample of 50 eruptions of the first geyser, the correlation coefficient between x and y is 0.758 .
The critical value for a 2-tailed hypothesis test for correlation at the 5\% level is 0.279.
Explain whether or not there is evidence of correlation in the population of eruptions.

The scatter diagram in Fig. 9 shows the data from a random sample of 50 eruptions of the second geyser.

Waiting time, y

Fig. 9
(b) Stella claims the scatter diagram shows evidence of correlation between duration of eruption and waiting time. Make two comments about Stella s claim.

10 A researcher wants to fi d ou how many adults in a large town use the internet at least once a week. The research r has f rmul ted a suitable question to ask.

For each of the following methods of taking a sample of the adults in the town, give a reason why the method may be biased.

Method A: Ask people walking along a particular street between 9 am and 5 pm on one Monday.
Method B: Put the question through every letter box in the town and ask people to send back answers.
Method C: Put the question on the local council website for people to answer online.

11 Suppose x is an irrational number, and y is a rational number, so that $y=\frac{m}{n}$, where m and n are integers and $n \neq 0$.
Prove by contradiction that $x+y$ is not rational.

12 Fig. 12 shows the curve $2 x^{3}+y^{3}=5 y$.

(a) Find the gradient of the curve $2 x^{3}+y^{3}=5 y$ at the point (1,2), giving your answer in exact form.
(b) Show that all the stationary points of the curve lie on the y-axis.

13 Evaluate $\int_{0}^{1} \frac{1}{1+\sqrt{x}} \mathrm{~d} x$, giving your answer in the form $a+b \ln c$, where a, b and c are integers.

14 In a chemical reaction, the mass m grams of a chemical at time t minutes is modelled by the differential equation
$\frac{\mathrm{d} m}{\mathrm{~d} t}=\frac{m}{t(1+2 t)}$.
At time 1 minute, the mass of the chemical is 1 gram.
(a) Solve the differential equation to show that $m=\frac{3 t}{(1+2 t)}$.
(b) Hence
(i) find the time when the mass is 1.25 grams,
(ii) show what happens to the mass of the chemical as t becomes large.

15 A quality control department checks the lifetimes of atteries produced by a company.
The lifetimes, x minutes, for a random sample of 80 'Superstrength' batteries are shown in the table below.

Lifetime	$160 \leq x<165$	$165 \leq x<168$	$168 \leq x<170$	$170 \leq x<172$	$172 \leq x<175$	$175 \leq x<180$
Frequency	5	14	20	21	16	4

(a) Estimate the proportion of these batteries which have a lifetime of at least 174.0 minutes.
(b) Use the data in the table to estimate

- the sample mean,
- the sample standard deviation.

The data in the table on the previous page are represented in the following histogram, Fig 15:

Fig. 15

A quality control manager models the data by a Normal dis ribution with the mean and standard deviation you calculated in part (b).
(c) Comment briefly on whether the histogram supports this choice of model.
(d) (i) Use this model to estimate the proba ility that a randomly selected battery will have a lifetime of more than 174.0 minutes.
(ii) Compare your answer with your answer to part (a).

The company also manufa t res Ultrapower' batteries, which are stated to have a mean lifetime of 210 minutes.
(e) A random sample of 8 Ultrapower batteries is selected. The mean lifetime of these batteries is 207.3 minutes.

Carry out a hypothesis test at the 5% level to investigate whether the mean lifetime is as high as stated. You should use the following hypotheses $\mathrm{H}_{0}: \mu=210, \mathrm{H}_{1}: \mu<210$, where μ represents the population mean for Ultrapower batteries.

You should assume that the population is Normally distributed with standard deviation 3.4.

16 Fig. 16.1, Fig. 16.2 and Fig. 16.3 show some data about life expectancy, including some from the pre-release data set.

Life expectancy at birth 1974 for 193 countries

Fig. 16.1

Life expectancy at birth 2014 for 222 countries

Fig. 16.2
Increase in life expectancy from 1974 to 2014

Increase in life expectancy for 193 countries from 1974 to 2014	
Number of values	193
Minimum	-4.618
Lower quartile	6.9576
Median	9.986
Upper quartile	15.873
Maximum	30.742

Source: CIA World
Factbook and
Fig. 16.3
(a) Comment on the shapes of the distributions of life expectancy at birth in 2014 and 1974.
(b) (i) The minimum value shown in the box plot is negative. What does a negative value indicate?
(ii) What feature of Fig $\mathbf{1 6 . 3}$ suggests that a Normal distribution would not be an appropriate model for increase in life expectancy from one year to another year?
(iii) Software has been used to obtain the values in the table in Fig. 16.3.

Decide whether the level of accuracy is appropriate. Justify your answer.
(iv) John claims that for half the people in the world their life expectancy has improved by 10 years or more.
Explain why Fig. 16.3 does not provide conclusive evidence for John's claim.
(c) Decide whether the maximum increase in life expectancy from 1974 to 2014 is an outlier. Justify your answer.

Here is some further information from the pre-rele se da a set.

Country	Life expectancy at birth in 2014
Ethiopia	60.8
Sweden	819

(d) (i) Estimate the change in life expectancy at birth for Ethiopia between 1974 and 2014.
(ii) Estimate the change in life expectancy at birth for Sweden between 1974 and 2014.
(iii) Give one possible reason why the answers to parts (i) and (ii) are so different.

Fig. 16.4 shows the relationship between life expectancy at birth in 2014 and 1974.
Life expectancy
at birth 2014 (years)

Fig. 164
A spreadsheet gives the following linear model for all the data in Fig 16.4.
$($ Life expectancy at birth 2014) $=3098+0.67 \times($ Life expectancy at birth 1974 $)$

The life expectancy at birth in 1974 or the region that now constitutes the country of South Sudan was 37.4 years. The value fr this country in 2014 is not available.
(e) (i) Use the linear model to estimate the life expectancy at birth in 2014 for South Sudan.
(ii) Give two reasons why your answer to part (i) is not likely to be an accurate estimate for the life expectancy at birth in 2014 for South Sudan.
You should refer to both information from Fig 16.4 and your knowledge of the large data set.
(f) In how many of the countries represented in Fig. 16.4 did life expectancy drop between 1974 and 2014? Justify your answer.

BLANK PAGE

Copyright Information:

Qu 16: Central Intelligence Agency, The World Factbook 2013-14. Washington, DC, 2013 . https://www.cia.gov/library/publications/the-worldfactbook/index.html

OCR is committed to seeking permission to reproduce all third-party content that it uses in the assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 9EA
OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

