RECOGNISING ACHIEVEMENT

ADVANCED SUBSIDIARY GCE

Additional materials: Answer Booklet (8 pages)
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- You are not permitted to use a calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.

 WARNING
 You are not allowed to use a calculator in this paper.

Section A (36 marks)

1 Make v the subject of the formula $E=\frac{1}{2} m v^{2}$.

2 Factorise and hence simplify $\frac{3 x^{2}-7 x+4}{x^{2}-1}$.

3 (i) Write down the value of $\left(\frac{1}{4}\right)^{0}$.
(ii) Find the value of $16^{-\frac{3}{2}}$.

4 Find, algebraically, the coordinates of the point of intersection of the lines $y=2 x-5$ and $6 x+2 y=7$.

5 (i) Find the gradient of the line $4 x+5 y=24$.
(ii) A line parallel to $4 x+5 y=24$ passes through the point $(0,12)$. Find the coordinates of its point of intersection with the x-axis.

6 When $x^{3}+k x+7$ is divided by $(x-2)$, the remainder is 3 . Find the value of k.
(i) Find the value of ${ }^{8} \mathrm{C}_{3}$.
(ii) Find the coefficient of x^{3} in the binomial expansion of $\left(1-\frac{1}{2} x\right)^{8}$.

8 (i) Write $\sqrt{48}+\sqrt{3}$ in the form $a \sqrt{b}$, where a and b are integers and b is as small as possible.
(ii) Simplify $\frac{1}{5+\sqrt{2}}+\frac{1}{5-\sqrt{2}}$.

9 (i) Prove that 12 is a factor of $3 n^{2}+6 n$ for all even positive integers n.
(ii) Determine whether 12 is a factor of $3 n^{2}+6 n$ for all positive integers n.

Section B (36 marks)

10 (i)

Fig. 10

Fig. 10 shows a sketch of the graph of $y=\frac{1}{x}$.
Sketch the graph of $y=\frac{1}{x-2}$, showing clearly the coordinates of any points where it crosses the axes.
(ii) Find the value of x for which $\frac{1}{x-2}=5$.
(iii) Find the x-coordinates of the points of intersection of the graphs of $y=x$ and $y=\frac{1}{x-2}$. Give your answers in the form $a \pm \sqrt{b}$.

Show the position of these points on your graph in part (i).

11 (i) Write $x^{2}-5 x+8$ in the form $(x-a)^{2}+b$ and hence show that $x^{2}-5 x+8>0$ for all values of x.
(ii) Sketch the graph of $y=x^{2}-5 x+8$, showing the coordinates of the turning point.
(iii) Find the set of values of x for which $x^{2}-5 x+8>14$.
(iv) If $\mathrm{f}(x)=x^{2}-5 x+8$, does the graph of $y=\mathrm{f}(x)-10$ cross the x-axis? Show how you decide.

12 A circle has equation $x^{2}+y^{2}-8 x-4 y=9$.
(i) Show that the centre of this circle is $C(4,2)$ and find the radius of the circle.
(ii) Show that the origin lies inside the circle.
(iii) Show that AB is a diameter of the circle, where A has coordinates $(2,7)$ and B has coordinates $(6,-3)$.
(iv) Find the equation of the tangent to the circle at A. Give your answer in the form $y=m x+c$.

