Please write clearly in	block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	_
		_

A-level PHYSICS

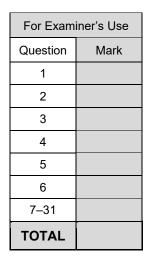
Paper 1

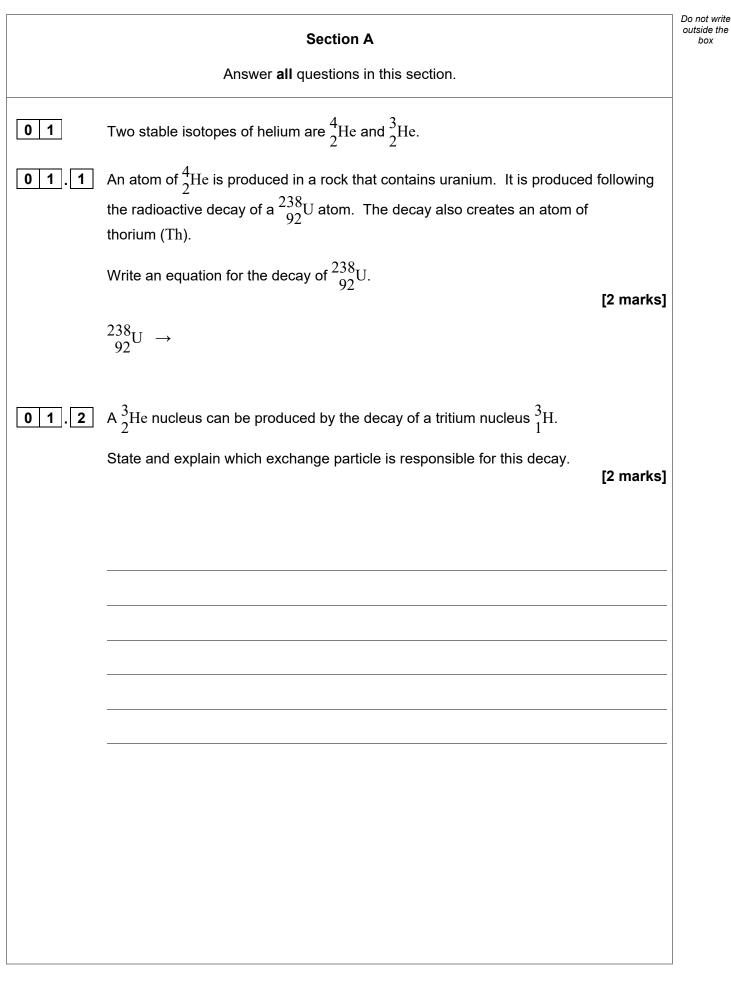
Time allowed: 2 hours

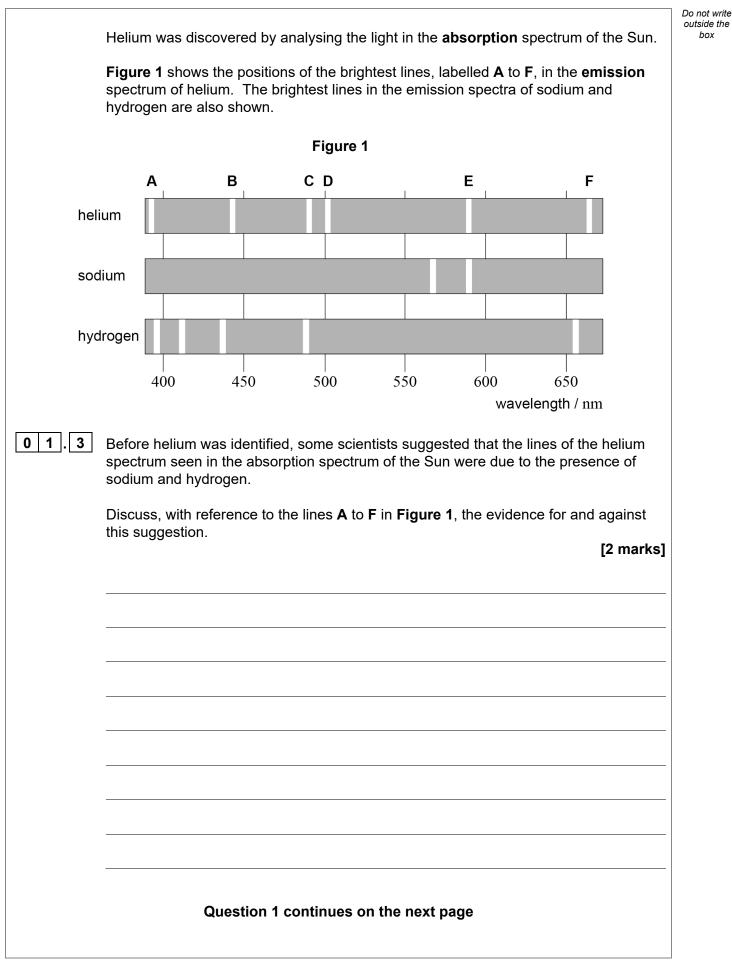
Materials

For this paper you must have:

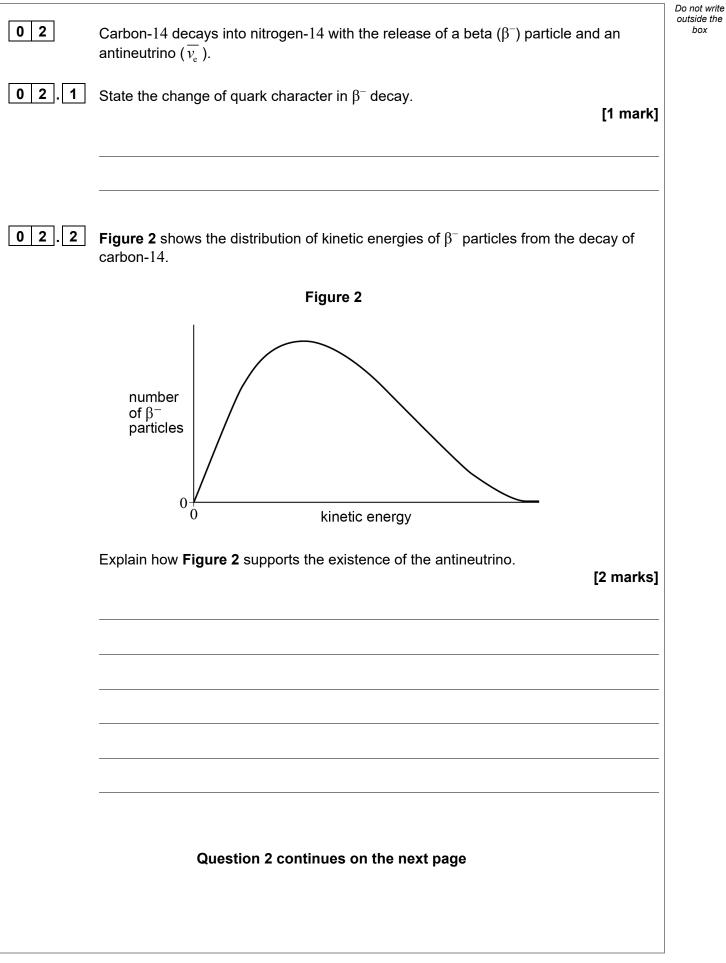
- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet
- a protractor.


Instructions


- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

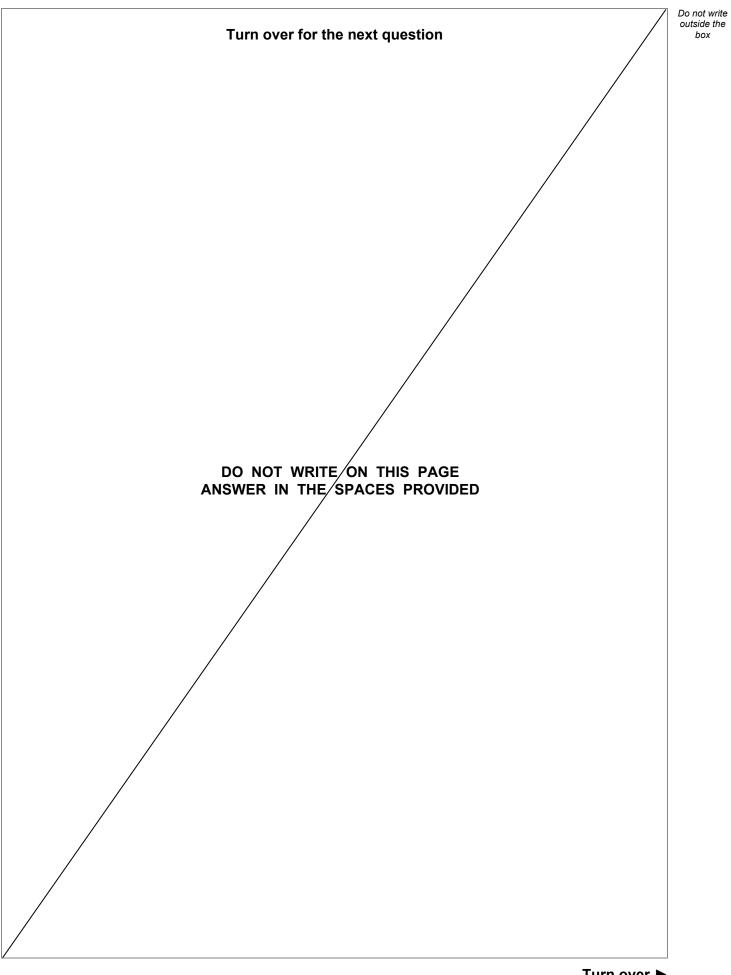

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 85.
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

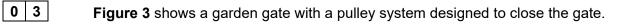


Turn over ►

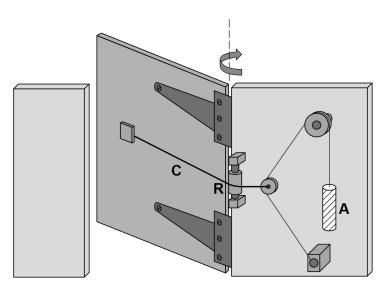
0 1 4		Do not write outside the box
	Calculate, in eV, the change in energy level responsible for the spectral line labelled E in Figure 1 .	
	[3 marks]	
	change in energy level = eV	
	change in energy level = eV	
0 1 5	Explain, with reference to the processes within an atom, the difference between an	
	emission spectrum and an absorption spectrum.	
	[3 marks]	
		12



The existence of the antineutrino was confirmed by experiments in which antineutrinos interact with protons. The equation for this interaction is: $\overline{v_{e}}$ + p \rightarrow e⁺ + X 0 2 . 3 Identify particle X. [1 mark] 0 2 . 4 The positron released in this interaction is annihilated when it encounters an electron. A pair of gamma photons is then produced. Particle **X** can be absorbed by a nucleus. This produces another gamma ray. Table 1 contains data for three gamma photons detected during an antineutrino-proton interaction experiment. Table 1 Gamma photon Photon energy / J G1 5.0×10^{-14} 6.6×10^{-14} G2 1.0×10^{-13} G3 Deduce which of the three gamma photons could have been produced by positron annihilation. [3 marks]


7

Do not write outside the box



Turn over ►

The pulley system raises weight **A** when the gate is opened. When the gate is released, **A** falls. The horizontal cable **C** passes over pulley **R**. The tension in cable **C** causes the gate to close.

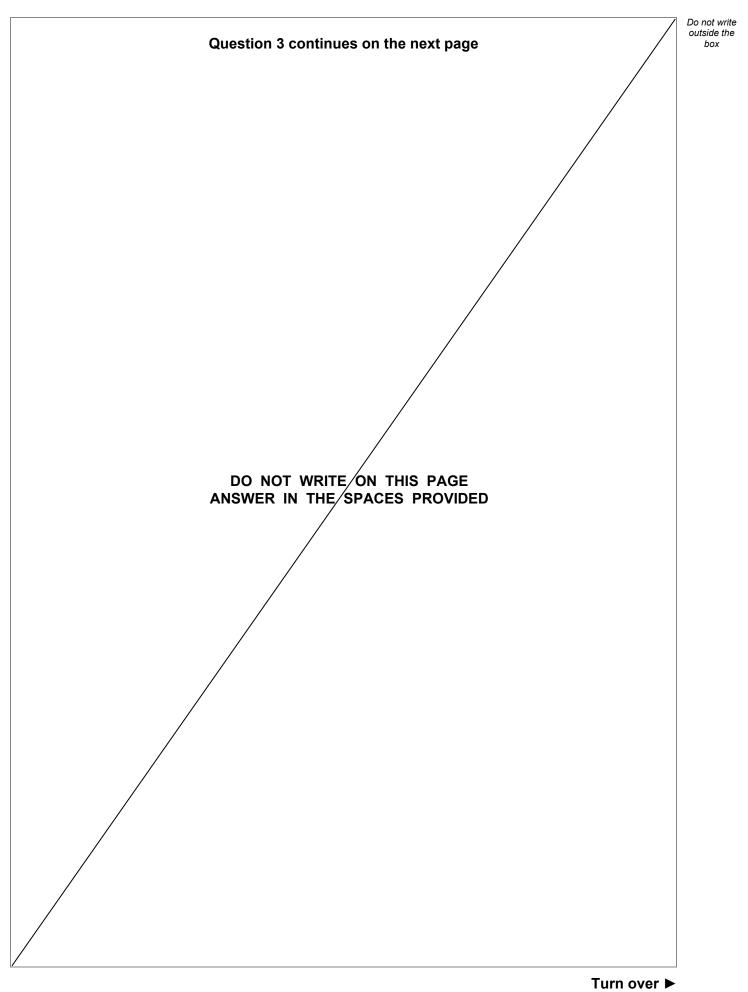
Weight **A** is a solid cylinder with the following properties:

diameter = 4.8×10^{-2} m length = 0.23 m weight = 35 N

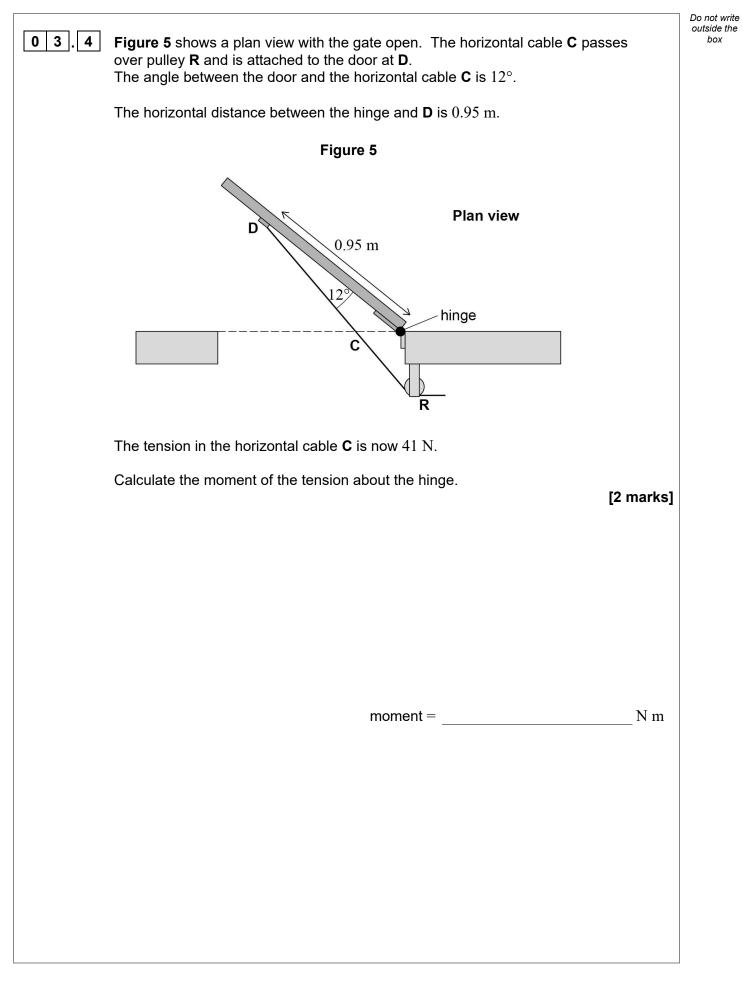
Table 2 gives the density of three available materials.

Material	Density / kg m ⁻³
concrete	2.4×10^{3}
iron	$7.8 imes 10^3$
brass	8.6×10^{3}

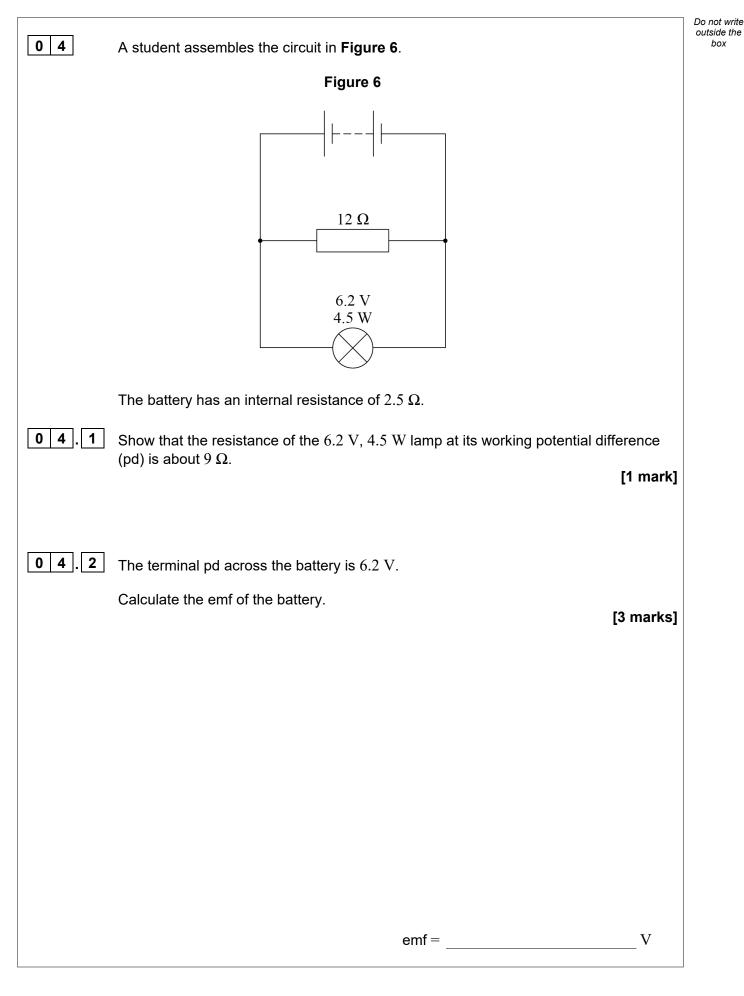
Table 2

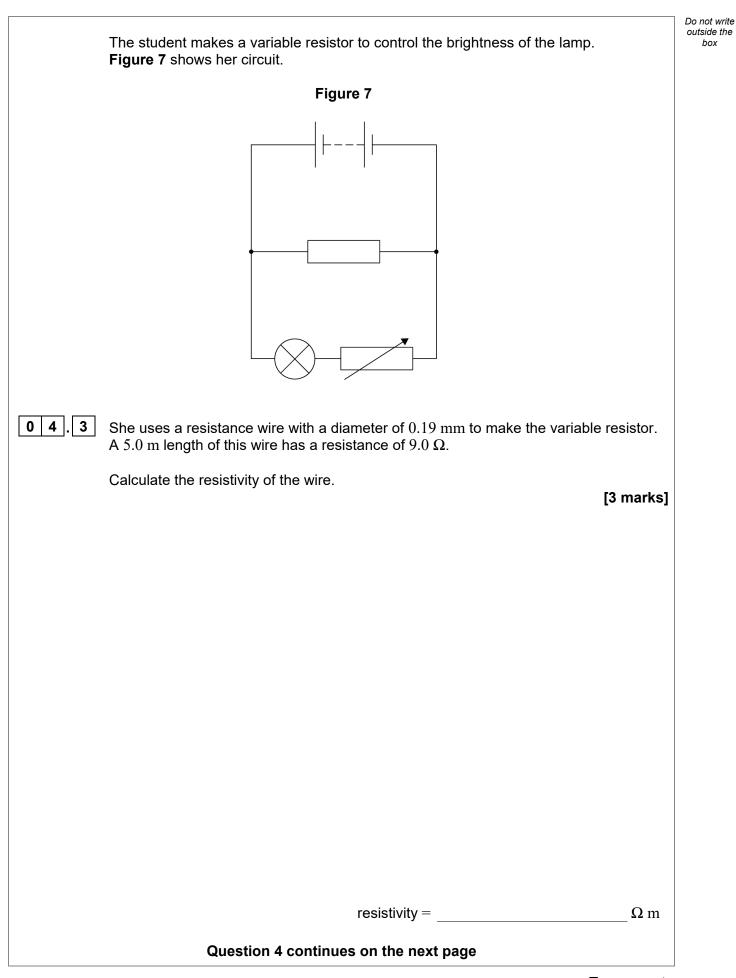

Do not write outside the

Do not write outside the **0 3**. **1** Deduce which **one** of the three materials is used for **A**. box [3 marks] Question 3 continues on the next page Turn over ►

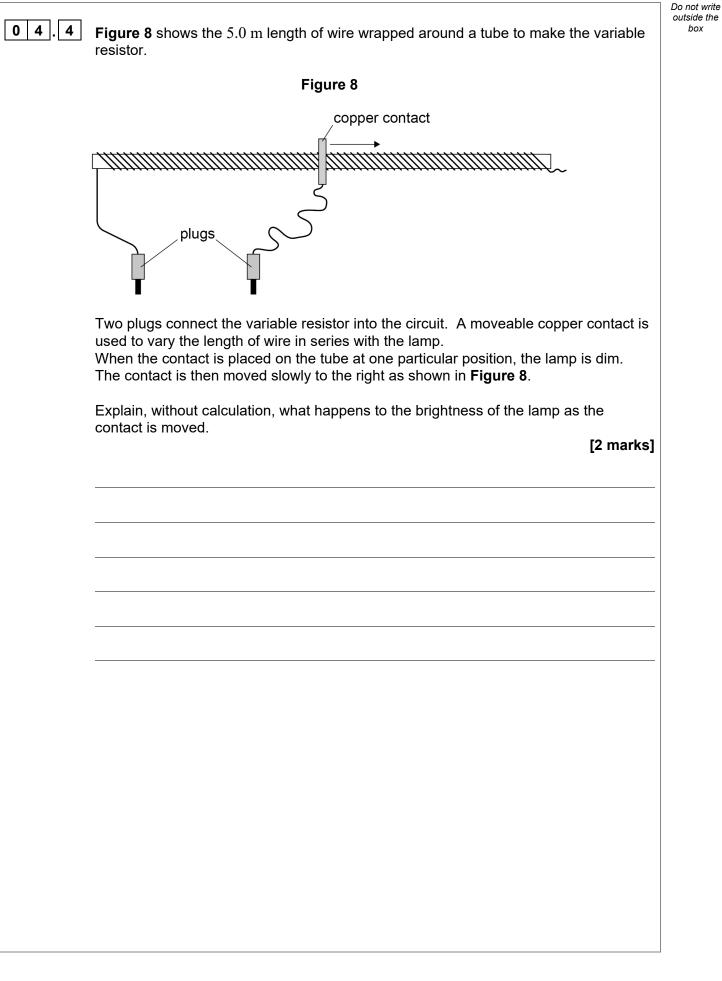


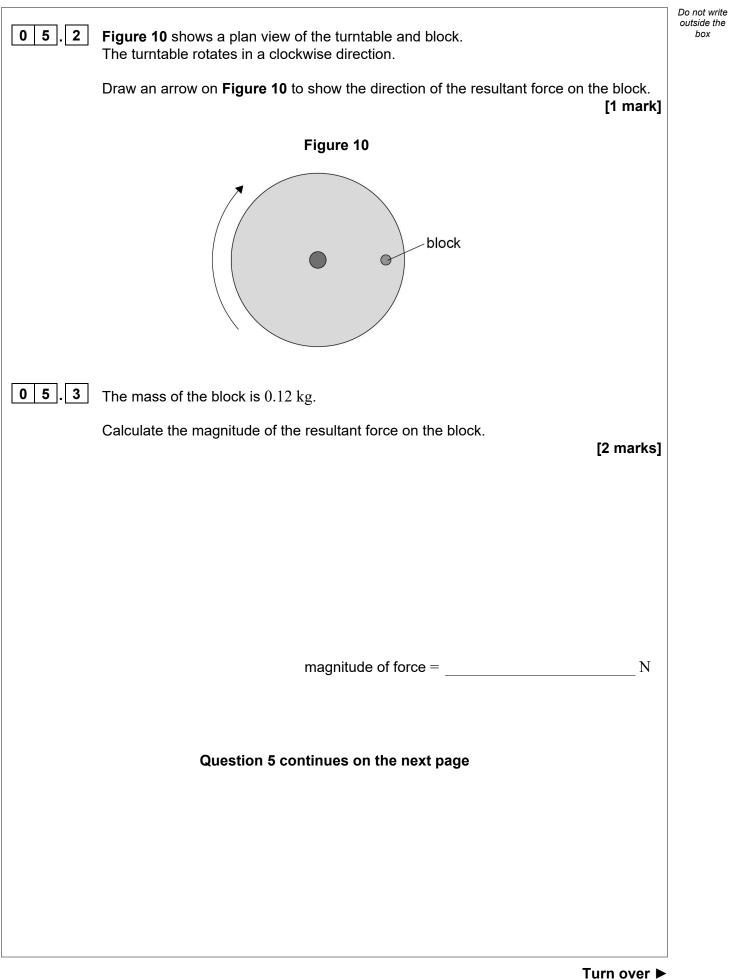
		Do not write outside the box
	Figure 4 shows the pulley arrangement when the gate is closed.	
	Figure 4	
	C M 55° A	
	Pulleys P and M are frictionless so that the tension in the rope attached to A is equal to the weight of A . A weighs 35 N and the weight of moveable pulley M is negligible.	
03.2	Calculate the tension in the horizontal cable C when the gate is closed. [2 marks]	
	tension =N	
03.3	Pulley M is pulled to the left as the gate is opened.	
	Explain why this increases the tension in the horizontal cable C . [2 marks]	
]





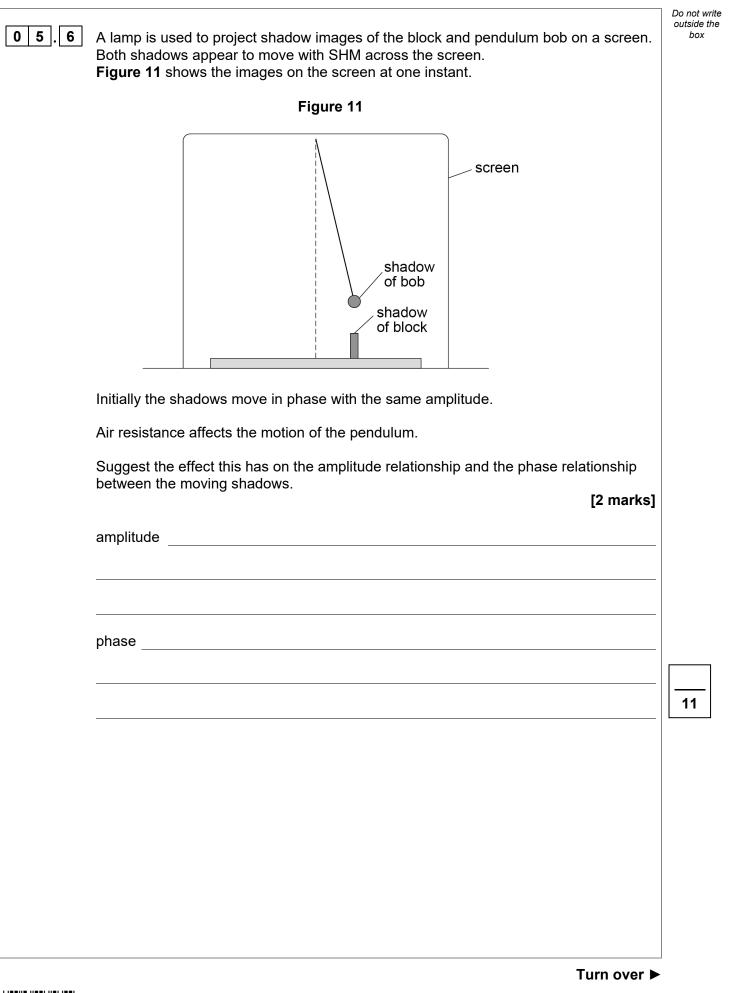
0 3.5	The same system is attached to an identical gate with stiffer hinges. Now the system does not supply a sufficiently large moment to close the gate.	Do not writ outside the box
	Discuss two independent changes to the design to increase the moment about the hinges due to horizontal cable C .	
	[4 marks]	
	1	
	2	
		13
		13
	Turn over for the next question	
	Turn over ►	

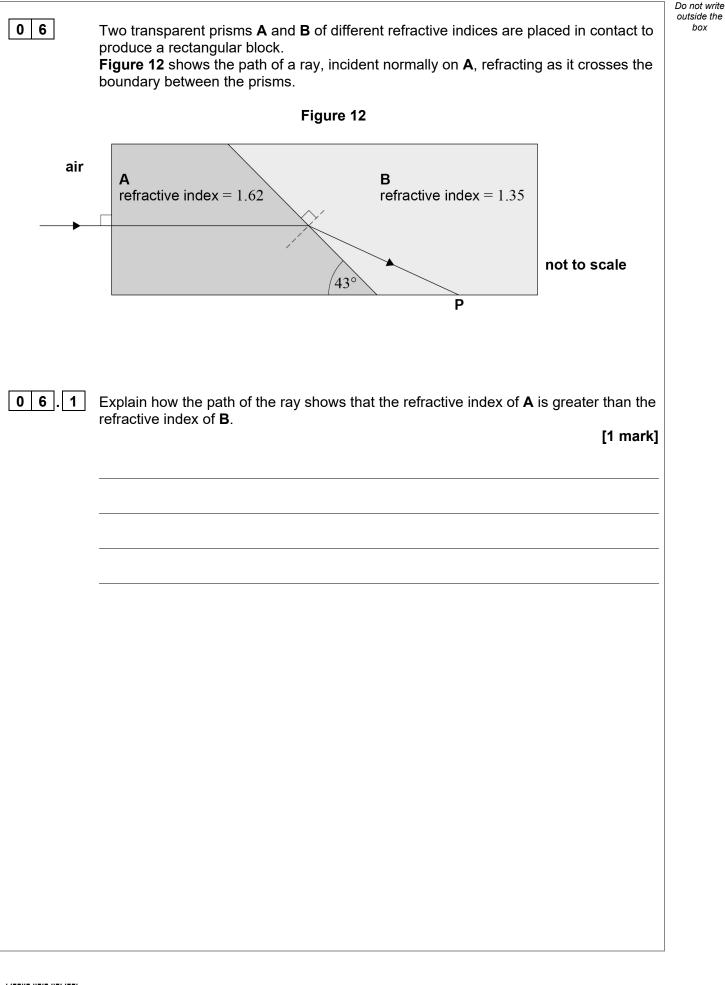




		Do not write
04.5	The student now makes a different circuit by connecting the variable resistor in parallel with the lamp.	outside the box
	The contact is returned to its original position on the tube as shown in Figure 8 and the lamp is dim. The contact is again slowly moved to the right.	
	Explain, without calculation, what happens to the brightness of the lamp as the contact is moved.	
	[2 marks]	
		11
	Turn over for the next question	

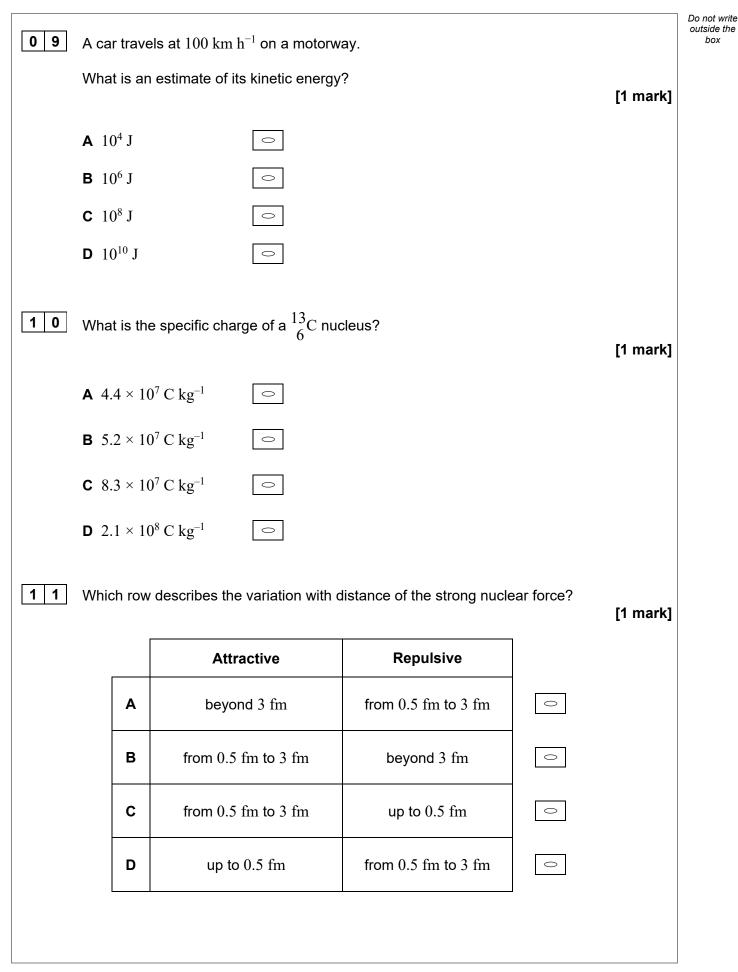
0 5	A teacher sets up a demonstration to show the relationship between circular motion and simple harmonic motion (SHM). She places a block on a turntable at a point 0.25 m from its centre, as shown in Figure 9 . Figure 9	Do not write outside the box
	turntable	
	The turntable rotates with an angular speed of 1.8 rad s^{-1} and the block does not slip.	
0 5.1	Calculate the time taken for the turntable to complete one revolution. [2 marks]	
	<u>4:ma –</u>	
	time =s	





Describe, with reference to one of Newton's laws of motion, the evidence that a resultant force is acting on the block. [2 marks]
The teacher adjusts the angular speed of the turntable so that the block completes one rotation every 2.50 s . She sets up a simple pendulum above the centre of the turntable so that it swings in phase with the movement of the block.
Calculate the length of the simple pendulum. [2 marks]
length = m

Do not write outside the box



06.2	Show that the angle of refraction of the ray in B is about 60°.	[2 marks]	Do not write outside the box
06.3	Draw, on Figure 12, the path of the ray immediately after it reaches P. Justify your answer with calculations.	[3 marks]	6

Section B	Do not v outside box
Each of Questions 07 to 31 is followed by four responses, A, B, C and D.	
For each question select the best response.	
Only one answer per question is allowed. For each question, completely fill in the circle alongside the appropriate answer.	
CORRECT METHOD WRONG METHODS 🐼 💿 📾 💋	
If you want to change your answer you must cross out your original answer as shown.	
If you wish to return to an answer previously crossed out, ring the answer you now wish to sele as shown.	∍ct
You may do your working in the blank space around each question but this will not be marked. Do not use additional sheets for this working.	
0 7 Which two quantities have the base unit $\text{kg m}^2 \text{ s}^{-2}$?	nark]
A kinetic energy and momentum	
B kinetic energy and Young modulus	
C work done and the moment of a couple \bigcirc	
D work done and pressure	
0 8 Which gives SI prefixes in descending order of magnitude?	nark]
A G p m	
BMGn	
C m n µ 🗢	
D m μ p Ο	

1 2	Which statement is correct?		Do not write outside the box
		[1 mark]	
	A All strange particles are mesons.		
	B Strange particles are always created in pairs.		
	C Strangeness can only change in strong interactions.		
	D Strangeness can only have a value of 0 or -1		
1 3	Which combination of quarks is possible?	[1 mark]	
	A sd		
	B sū \bigcirc		
	C sūd		
	D ud		
14	In photoelectricity, $V_{\rm s}$ is the stopping potential. What quantity is $eV_{\rm s}$?	[1 mark]	
	A energy of an incident photon		
	B maximum kinetic energy of a photoelectron		
	C threshold frequency \times the Planck constant		
	D work function		



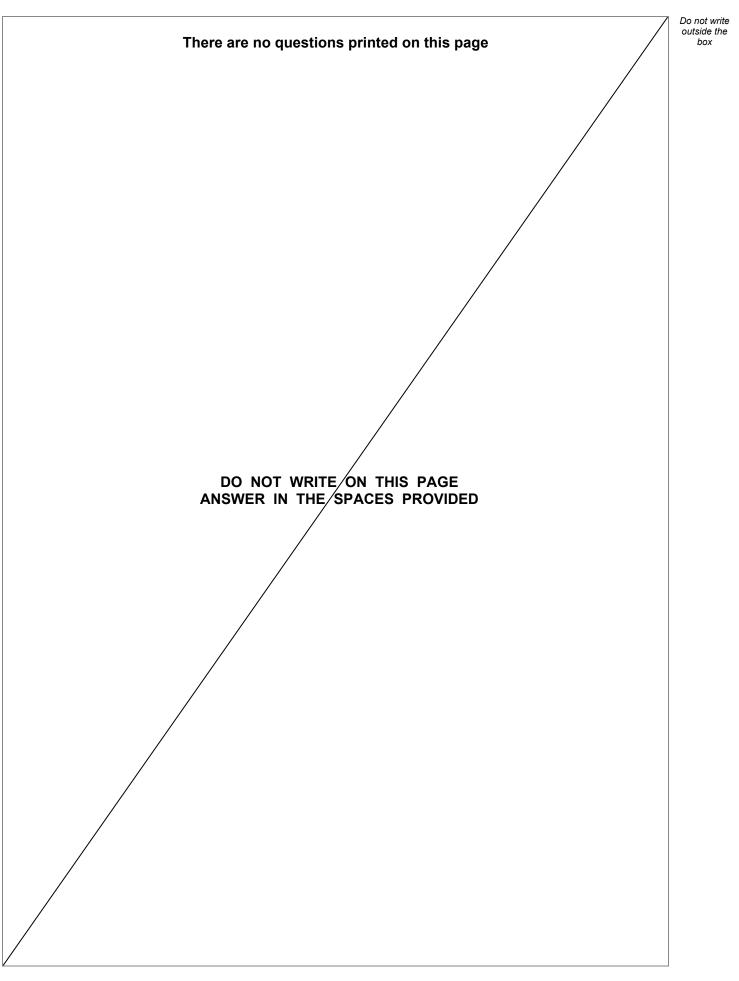
1 5	A flu	oresc	ent tube contains a gas.				Do not write outside the box
	The	coatir	ng of the tube			[1 mark]	
	 A becomes ionised by the gas and emits photons of ultraviolet light. B absorbs photons of ultraviolet light from the gas and emits visible light. C absorbs photons of ultraviolet light from the gas and emits photoelectrons. D absorbs several photons of visible light from the gas and then emits one photon of ultraviolet light. 						
1 6		ch row re of l		nature of electrons and evider	nce for the		
			Γ		1	[1 mark]	
			Wave nature of electrons	Particulate nature of light			
		Α	electron diffraction	photoelectric effect	0		
		в	electron diffraction	single-slit diffraction	0		
		с	photoelectric effect	single-slit diffraction	0		
		D	photoelectric effect	electron diffraction	0		
1 7	Whic	ch par	ticle has the smallest de Brogl	lie wavelength?	-	[1 mark]	
	A a	n elec	tron moving at $4 imes 10^3 \mbox{ m s}^{-1}$	0			
	B a	proto	n moving at $4\times 10^3~m~s^{-1}$	0			
	C a	n elec	tron moving at $8 \times 10^5 \mbox{ m s}^{-1}$	0			
	D a	proto	n moving at $8 imes 10^5 \ { m m \ s^{-1}}$	0			

Turn over ►

					Do not write
1 8	A longitudinal wave of free The wave speed is $330~\mathrm{m}$	quency 660 Hz travels through a med n s ⁻¹ .	ium.		outside the box
	Which statement describe	es the motion of a particle in the wave	?	[1 mark]	
	A It is travelling at a spec	ed of 330 m s^{-1} .	0		
	B It moves in phase with	a particle in the wave 25 cm away.	0		
	C It oscillates with a time	e period of 1.5 ms.	0		
	D It changes direction 66	50 times every second.	0		
19	The tension in the string in the tension is increased	harmonic of a standing wave on a str is T . to $4T$ without changing the length or n equency $2f$ after this change?			
		quency 2) aller this change?		[1 mark]	
	A first	0			
	B second	0			
	C third	0			
	D fourth	0			
20	Light of wavelength 5.2 × The distance from the slit The width of ten fringes is What is the separation of	s 3.5 cm.	lit experiment.	[1 mark]	
	A $2.2 \times 10^{-5} \text{ m}$	0			
	B $9.9 \times 10^{-5} \text{ m}$	0			
	C $1.1 \times 10^{-4} \text{ m}$	0			
	D $2.2 \times 10^{-4} \text{ m}$	0			

		Do not write
2 3	A ball is thrown vertically upwards and returns to its original position $2.4~{ m s}$ later. The effect of air resistance is negligible.	box
	What is the total distance travelled by the ball? [1 mark]	
	A 5.9 m ○	
	B 7.1 m	
	C 14 m •	
	D 28 m	
24	A truck of mass 2.1×10^3 kg tows a car of mass 1.3×10^3 kg along a horizontal road. The total resistive force on the car is 1100 N. The acceleration of the car and truck is 2.3 m s ⁻² .	
	What is the tension in the tow rope? [1 mark]	
	A 3000 N \bigcirc	
	B 4100 N	
	C 7800 N	
	D 8900 N	
]

A parachutist descends to the ground at a constant speed with the parachute	outside	e the
Which force, together with the parachutist's weight, makes a pair according to third law of motion?	Newton's [1 mark]	
A the drag force on the parachutist from the air		
B the tension in the strings of the parachute		
f C the gravitational force of the parachutist on the Earth		
D the lift force on the parachute from the air		
A tennis ball has a mass of 58 g . The ball is dropped from rest from a height of 1.8 m above the ground and fall The ball rebounds vertically to a height of 1.1 m . The effect of air resistance is negligible.	s vertically.	
What is the change in momentum of the ball during its collision with the groun	d? [1 mark]	
A 0.040 N s		
B 0.075 N s □		
C 0.215 N s		
D 0.614 N s		
	Which force, together with the parachutist's weight, makes a pair according to third law of motion? A the drag force on the parachutist from the air B the tension in the strings of the parachute C the gravitational force of the parachutist on the Earth D the lift force on the parachute from the air C the gravitational force of the parachute from the air C the gravitational force of the parachute from the air D the lift force on the parachute from the air A tennis ball has a mass of 58 g. The ball is dropped from rest from a height of 1.1 m. The ball rebounds vertically to a height of 1.1 m. The teffect of air resistance is negligible. What is the change in momentum of the ball during its collision with the groun A 0.040 N s B 0.075 N s C 0.215 N s	Imark] A the drag force on the parachutist from the air □ B the tension in the strings of the parachute □ C the gravitational force of the parachutist on the Earth □ D the lift force on the parachute from the air □ A tennis ball has a mass of 58 g. The ball is dropped from rest from a height of 1.8 m above the ground and falls vertically. The ball rebounds vertically to a height of 1.1 m. The effect of air resistance is negligible. What is the change in momentum of the ball during its collision with the ground? Imark] A 0.040 N s □ B 0.075 N s □ C 0.215 N s



2 7	A mass M is suspended from a spring. When the mass is at rest at the equilibrium	Do not writ outside the box
	position, the elastic potential energy stored is E . An extra mass of $2M$ is added to the spring and the spring extends while still obeying Hooke's law.	
	What is the total elastic energy stored when the system is at rest at the new equilibrium	
	position? [1 mark]	
	A $2E$	
	B $3E$	
	C 4 <i>E</i>	
	D 9E	
2 8	Two wires P and Q are made of the same material and have the same cross-sectional	
	area. P has an original length L and is subject to a tensile force F . P extends a distance x . Q has an original length $2L$ and is subject to a tensile force $2F$.	
	Which statement is correct? [1 mark]	
	A The stress in P and the stress in Q are the same.	
	B The extension of Q is $2x$.	
	C The strain of Q is double the strain of P.	
	D The value of $\frac{\text{stress}}{\text{strain}}$ for P is half that of Q.	
29	The current in a metallic conductor is 1.5 mA .	
	How many electrons pass a point in the conductor in two minutes?	
	[1 mark]	
	A 1.1×10^{18}	
	B 1.9×10^{19}	
	C 1.4×10^{20}	
	D 2.0×10^{29}	

3 0	Which value of resi	stance cannot be made by combining three $10 \ \Omega$ resistors? [1 mark]	Do not write outside the box
		[
	Α 3.3 Ω	0	
	Β 6.7 Ω	0	
	C 15 Ω	0	
	D 25 Ω	0	
3 1	A particle performs 12 mm.	simple harmonic motion with a time period of $1.4\ s$ and an amplitude of	
	What is the maxim	um speed of the particle? [1 mark]	
	A 8.6 mm s ^{-1}	0	
	$\textbf{B} \ 27 \ mm \ s^{-1}$	0	
	C 54 mm s^{-1}	0	
	D 110 mm s ^{-1}	0	25
		END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	
	Copyright information	
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.	
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.	
	Copyright © 2022 AQA and its licensors. All rights reserved.	

