

Mark Scheme (Results)

January 2020

Pearson Edexcel International GCSE in Chemistry (4CH1) Paper 1CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

January 2020 Publications Code 4CH1_1CR_msc_20200305 All the material in this publication is copyright © Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	C Neutron The only correct answer is C because the nucleus contains protons and neutrons. Protons are identified as the white dots		1
	A is not correct because electrons occur in the shells B is not correct because a molecule is not a particle found in the nucleus		
	D is not correct because the nucleus contains protons and neutrons		
(b)	A Electron The only correct answer is A because electrons have a relative mass of 1/1836 compared to a proton or a neutron		1
	B is not correct because a neutron has a relative mass of 1 C in not correct because the nucleus contains 4 protons and 5 neutrons D is not correct because a proton has a relative mass of 1		
(C)	C 9 The only correct answer is C because the mass number is the sum of the protons and neutrons		1
	A is not correct because the atomic number is 4 B is not correct because 5 is the number of neutrons D is not correct because 13 is the total number of protons, neutrons and electrons		
(d)	A 4 The only correct answer is A because the atomic number is equal to the number of protons which is 4		1
	 B is not correct because 5 is the number of neutrons C is not correct because 9 is the total number of particles in the nucleus D is not correct because 13 is the total number of protons, neutrons and electrons 		
(e) (i)	beryllium/Be		1
(ii)	(positive) ion	ALLOW ecf from the element given in (e)(i) ACCEPT any positive beryllium ion (or other	1
		ecf ion) REJECT any negative ion	

Question number	Answer	Notes	Marks
2 (a) (i)	Particles should be close together and should fill from the bottom of the box, some particles should touch	ALLOW particles filling the whole box IGNORE the size of the particles REJECT a regular arrangement	1
(ii)	Gas	ALLOW gaseous	1
(b)	M1 (water evaporates) l to g	ALLOW words for M1, M2 and M3	3
	M2 (crystals of iodine sublime) s to g		
	M3 (ice melts) s to l		
(c)	M1 (particles / molecules have) more energy	ALLOW water has more energy ALLOW (particles / molecules have) move faster IGNORE vibrate more	2
	M2 to overcome / break the forces (between water molecules)	ALLOW to overcome / break the bonds (between water molecules) OR to break away from one another OR so escape more easily	
		IGNORE references to collisions or activation energy	

Question number		Answer	Notes	Marks
3 (a)		Most Z ₂	ALLOW Z	1
		Y ₂	Y X	
		Least X ₂	^	
			ALLOW lower case letters	
			IGNORE size of number	
			IGNORE any names given	
(b)		bromine	ALLOW bromine water OR bromine solution / Br / Br ₂	1
			REJECT bromide	
(c) (i	i)	(Fluorine) gas / vapour		3
		(chlorine) range between -150°C to 10°C inclusive		
		(Astatine) dark grey / black	REJECT blue-black	
(c) (ii)	ii)	C - the halogens have the same number of outer shell electrons.		1
		The only correct answer is C because the halogens are in group 7 and have similar reactions because they have the same number of electrons in their outer shells.		
		A is not correct because the fact halogens are non- metals does not make them react in a similar way. B is not correct because the fact halogens are molecules does not make them react in a similar way. D is not correct because elements in the same		
		period have different numbers of outer shell electrons and react differently.		
(0	d)(i)	<u>Chlorine</u> is toxic / poisonous	IGNORE harmful / dangerous / irritant IGNORE any reference to products	1
(0	d)(ii)	M1 FeCl ₃	ALLOW correct charges	2
		M2 2Fe + $3Cl_2 \rightarrow 2FeCl_3$	on the ions REJECT incorrect capitals REJECT large or super- script 3	
		M2 rest of the equation balanced	ALLOW multiples or fractions for M2	
			M2 dep on M1	

Question number	Answer	Notes	Marks
4 (a)	NH4 ⁺	ALLOW NH_4^{+1} and NH_4^{1+}	1
(b)	M1 add sodium hydroxide solution (and warm)		3
	M2 (test the gas with damp) red litmus	ALLOW (test the gas with damp) universal indicator	
	M3 turns blue	If universal indicator is used allow blue / purple for M3	
	OR	M3 dep on litmus or universal indicator in M2	
	M2 expose the gas to concentrated hydrochloric acid		
	M3 white smoke produced	If sodium hydroxide solution is not added	
		max = 1	
(C)	(the reaction is) reversible	ACCEPT reaction that goes both ways / both forwards and backwards reactions occur IGNORE references to equilibrium	1
(d)(i)	M1 (molecules / particles of) ammonia move / diffuse faster	equilibrium	2
	M2 because the ammonium chloride forms near(er) to the HCl OR because the ammonia has travelled further (in the same time)	IGNORE references to the masses / sizes of the particles	
(d)(ii)	Any two from:		2
	M1 (gas particles) move in random directions / don't travel in straight lines OWTTE		
	M2 (gas particles) collide with air / other particles	ALLOW air / other particles slow them	
	M3 (gas particles) collide with the walls / sides (of the tube) OWTTE	down	
		IGNORE any references to rate of reaction / collisions	

Question number	Answer	Notes	Marks
5 (a)	Results are the same at the end	ALLOW there is a constant volume in the tube ALLOW the volume of gas stops decreasing ALLOW no change after 4 / 5 minutes IGNORE references to time REJECT the volume of gas stops increasing	1
(b)	(use a glass tube / scale with) smaller divisions.	ALLOW use a glass tube / scale with 0.1cm ³ divisions ALLOW use a smaller scale IGNORE references to repeating the experiment IGNORE references to temperature	1
(C)	M1 Volume of oxygen = 11.5(cm ³) M2 (11.5 ÷ 48.5) x 100	Correct answer to 1 dp with or without working scores 3 ALLOW ecf from M1	3
	M3 23.7%	M3 must be to 1dp	

magnesium is more reactive than copper	ALLOW magnesium can	
	displace copper ALLOW magnesium is higher than copper in the reactivity series REJECT magnesium is more reactive than copper(II) or Cu ²⁺ or copper sulfate	1
magnesium sulfate + copper	Both are required for the mark. Either order. REJECT copper(II) IGNORE any chemical formulae given	1
M1 Temperature rise = 36.1(°C) M2 15 162J	Correct answer with or without working scores 2 ALLOW ecf from M1 ALLOW 2 or more	2
An explanation that links any two of the following points	IGNORE negative sign	2
M1 polystyrene is an insulator	ALLOW polystyrene is not a (good) conductor of heat ALLOW polystyrene is a poor conductor of heat	
M2 (so) reduces heat loss (to the surroundings) OWTTE	ALLOW prevents heat loss ALLOW keeps heat in	
M3 temperature rise/change/reading will be closer to true value OWTTE	ALLOW temperature rise/change/reading will be more accurate/valid	
	M1 Temperature rise = 36.1(°C) M2 15 162J An explanation that links any two of the following points M1 polystyrene is an insulator M2 (so) reduces heat loss (to the surroundings) OWTTE M3 temperature rise/change/reading will be closer	the reactivity series REJECT magnesium is more reactive than copper sulfatemagnesium sulfate + copperBoth are required for the mark. Either order. REJECT copper(II) IGNORE any chemical formulae givenM1 Temperature rise = 36.1(°C)Correct answer with or without working scores 2M2 15 162.JALLOW ecf from M1 ALLOW 2 or more significant figures IGNORE negative signAn explanation that links any two of the following pointsALLOW polystyrene is not a (good) conductor of heat ALLOW polystyrene is a poor conductor of heat ALLOW temperature rise/change/reading will be closer to true value OWTTE

(c)(i)	M1 calculate the amount, in moles, of zinc		3
	M2 divide Q by the amount in moles	M2 subsumes M1	
	M3 give the answer to three significant figures with a - sign	Correct answer of -217 with or without working scores 3 marks.	
	Example calculation	scores 5 marks.	
	M1 0.500 ÷ 65 OR 0.00769	Allow ECF throughout	
	M2 1.67 ÷ 0.00769 OR 217 (kJ/mol)		
	M3 - 217 (kJ/mol)		
	OR		
	M1 1.67 ÷ 0.5 OR 3.34 kJ/g)		
	M2 3.34 × 65 OR 217 (kJ/mol)		
	M3 -217 (kJ/mol)		
(c)(ii)	M1 zinc is oxidised and Cu ²⁺ is reduced	ALLOW zinc is oxidised and copper(sulfate) is reduced in M1 ALLOW oxidation and reduction occur	3
	M2 Zinc loses electrons	ALLOW references to changes in oxidation number for M2 and M3	
	M3 Cu ²⁺ gains electrons	Must mention copper ions for M3	

Question number		Answer	Notes	Marks
7 (a)	(i)	Measuring cylinder / burette / (volumetric) pipette		1
	(ii)	Neutralisation	ACCEPT exothermic IGNORE base or alkali	1
(b)	(i)	12.4		1
	(ii)	15cm³ - red/orange 30cm³ - blue/purple		2
	(iii)	OH ⁻ / hydroxide (ion)	REJECT OH	1
(c)		M1 the reaction is exothermic (therefore the temperature rises)	ALLOW the reaction gives out heat (energy) or thermal energy IGNORE energy alone	3
		M2 (after 25cm ³ of sodium hydroxide) the reaction is complete OWTTE	ALLOW (after 25cm ³ of sodium hydroxide) neutralisation happens	
		M3 so adding more sodium hydroxide / liquid / solution cools the mixture down	ALLOW so no more heat (energy) or thermal energy is given out OWTTE IGNORE energy alone	

Question number	Answer	Notes	Marks
8 (a)	M1 calcium loses electrons M2 chlorine gains electrons	IGNORE references to redox Allow 1 mark from M1	3
		and M2 for electron transfer from chlorine to calcium	
	M3 two atoms of chlorine each gain one electron	If chlorine molecules are gaining electrons do not award M3	
	M3 calcium loses 2 electrons and chlorine gains 1 electron		
		Any reference to sharing electrons or covalent or metallic bonding scores 0	
(b)	(test for Ca ²⁺ ions) M1 flame test (allow description of a flame test)		4
	M2 orange-red flame colour	ALLOW brick-red IGNORE orange / red alone M2 dep on M1	
		ALLOW M1 add sodium hydroxide	
		ALLOW M2 (slight) white precipitate (reject precipitate dissolves in excess sodium hydroxide)	
	(test for Cl ⁻ ions)		
	M3 add silver nitrate	IGNORE reference to nitric acid REJECT hydrochloric acid or sulfuric acid	
	M4 white precipitate	M4 dep on silver nitrate in M3	

(c)(i)	M1 and M2 all points correct \pm half a square	One plotting error scores M1	3
	M3 2 straight lines of best fit ignoring the anomalous point		
	Conductivity of 20 biodiscism in arbitrary units 20 10 10 10 10 10 10 10 10 10 10 10 10 10		
(c) (ii)	the conductivity is (directly) proportional (to the number of spatulas of calcium chloride added)		1
	OR		
	the conductivity increases (as the number of spatulas of calcium chloride increases)		
(iii)	Any one from:		1
	M1 The student took the reading before adding the calcium chloride		
	M2 The student forgot to stir the mixture OR did not stir the mixture properly		
		IGNORE any references to human error	
(d)	M1 Heat (the calcium chloride)		2
	M2 until molten / melts	IGNORE references to electrons / ions	

Question number		Answer	Notes	Marks
9 (a)	(i)	M1 (Empirical formula) CH ₂ M2 (General formula) C _n H _{2n}	ALLOW sub and super script numbers for M1 and M2 ALLOW letters other than n ALLOW capital letters	2
	(ii)	Any two from:		2
		$\textbf{M1}$ each member differs from the next by a CH_2 group OWTTE		
		M2 (each member has) same functional group		
		M3 (each member has) similar/same chemical properties / similar/same (chemical) reactions	ACCEPT react in similar/same way	
		M4 trend in physical properties (between successive members)	ACCEPT named physical property, e.g. boiling point	
			REJECT similar/same physical properties	
(b)	(i)	addition	ALLOW additional	1
			REJECT condensation	
	(ii)	(ii) Complete the equation for the polymerisation of ethene. (2) $n \qquad H \qquad $		2
		M1 Single bond between the two carbons, 4 hydrogens joined by single bonds		
		M2 trailing bonds through the brackets and the n to the right	ALLOW n in any position outside the bracket to the right of the structure. ALLOW capital N	
	(iii)	Any 5 points from:	If only advantages or disadvantages given, max 3 marks	5
		M1 Poly(ethene) is cheaper than polymers from corn starch		
		M2 Poly(ethene) is stronger than polymers from corn starch	IGNORE durable	
		M3 Poly(ethene) frees up land to grow food crops		

M4 Poly(ethene) comes from (cracking of certain fractions from) crude oil		
M5 Poly(ethene) is non-renewable OR ethene is a finite source		
M6 Poly(ethene) is inert		
M7 poly(ethene) is non-biodegradable		
M8 poly(ethene) takes longer to decompose		
M9 Disposal of poly(ethene) is a problem (in landfill)		
M10 Poly(ethene) causes problems with litter		
M11 Burning poly(ethene) (could) create toxic fumes / greenhouse gases		
н н с н н с	Must show every bond. IGNORE bond angles IGNORE n IGNORE brackets REJECT trailing bonds	1
	fractions from) crude oil M5 Poly(ethene) is non-renewable OR ethene is a finite source M6 Poly(ethene) is inert M7 poly(ethene) is non-biodegradable M8 poly(ethene) takes longer to decompose M9 Disposal of poly(ethene) is a problem (in landfill) M10 Poly(ethene) causes problems with litter M11 Burning poly(ethene) (could) create toxic fumes / greenhouse gases $H = -\frac{H}{C - H} = H$	fractions from) crude oilM5 Poly(ethene) is non-renewable OR ethene is a finite sourceM6 Poly(ethene) is inertM7 poly(ethene) is non-biodegradableM8 poly(ethene) is non-biodegradableM8 poly(ethene) takes longer to decomposeM9 Disposal of poly(ethene) is a problem (in landfill)M10 Poly(ethene) causes problems with litterM11 Burning poly(ethene) (could) create toxic fumes / greenhouse gasesMust show every bond. IGNORE bond angles IGNORE n IGNORE brackets REJECT trailing bonds

Question number	Answer	Notes	Marks
10 (a) (i)	M1 four electrons between the carbon and each oxygenM2 rest of molecule correct	M2 dep on M1	2
(ii	M1 shared pair(s) of electrons		2
	M2 attracted to (two) nuclei	REJECT nucleus. Must be plural for M2. M2 dep on mention of electrons in M1	
(b) (i)	M1 Graphite has delocalised electrons	IGNORE sea of electrons IGNORE free electrons IGNORE number of electrons	2
	M2 (delocalised electron(s)) can move or flow (throughout the structure)	IGNORE references to carrying a charge or current IGNORE references to layers	
		M2 dep on mentioning electrons in M1	
		Any mention of ions scores 0	
(ii	M1 (diamond) giant covalent	ALLOW macromolecular ALLOW giant structure if M2 is scored IGNORE tetrahedral structure REJECT molecules of diamond	5
	M2 (in melting diamond) covalent bonds are broken	ALLOW description of covalent bonds	
	M3 (C_{60}) (simple) molecular structure	ALLOW molecules of C_{60}	
	$M4$ (in melting C_{60}) intermolecular forces (of attraction) are overcome		
	$M5$ more energy is needed to break covalent bonds (in diamond) than intermolecular forces (in C_{60})	ALLOW strong covalent bonds and weak intermolecular forces (or attraction)	

	ACCEPT breaking bonds in C ₆₀ if intermolecular forces clearly mentioned	
	Mention of intermolecular forces in diamond no M2 or M5	
	Mention of breaking covalent bonds in C ₆₀ no M4 or M5	

Question number	Answer	Notes	Marks
11 (a)	4 CuO (s)+ CH ₄ (g) \rightarrow 4 Cu (s)+ CO ₂ (g) + 2 H ₂ O (l/g)	ALLOW multiples and fractions	2
	M1 correct balancing		
	M2 correct state symbols		
(b) (i)	M1 Mass copper 3.18g and mass oxygen 0.40g		4
	M2 Moles copper = 3.18/63.5 OR 0.0500 moles		
	M3 Moles oxygen = 0.40/16 OR 0.025 moles	M2 and M3 allow ecf from M1	
	M4 Ratio of moles Cu:O is 2:1	M4 is dep on M2 and M3	
(ii)	Any one from:		1
	M1 Use a safety screen	ALLOW tie hair back	
	M2 Position the class some distance from the apparatus	ALLOW wear heat-proof gloves	
	M3 Do the experiment in a fume cupboard		
	M4 Set fire to the (excess) methane gas straight away		
(c)(i)	(Iron (III) oxide) loses oxygen	ALLOW iron loses	1
		IGNORE any reference to electrons.	
(ii)	Carbon monoxide is poisonous / toxic OR carbon monoxide reduces the ability of the blood to carry oxygen	ALLOW carbon monoxide binds to haemoglobin in the blood	1

(iii)	• calculate M_r of Fe ₂ O ₃	Correct answer of 21	4
()	 calculate the amount, in moles, of Fe₂O₃ 	tonnes scores 4 marks	
	• calculate the amount, in moles, of Fe	with or without working	
	 calculate the mass in tonnes of Fe 		
	Example calculation	ALLOW ecf from M1	
		(incorrect M _r)	
	M1 $M_{\rm r}$ of Fe ₂ O ₃ = 160		
	M2 $n(\text{Fe}_2\text{O}_3) = 30.0 \times 10^6 \div 160 \text{ OR} 187,500 \text{ moles}$	ALLOW working in	
	$m_2 n(1 e_2 e_3) = 50.0 \times 10^{-1} \cdot 100 \text{ GK} + 07,500 \text{ motes}$	megamoles	
		ALLOW ecf from M1	
	M3 <i>n</i> (Fe) = 187,500 x 2 OR 375,000 moles	ALLOW working in	
	MS (((e) = 107,500 x 2 OK 575,000 moles	megamoles	
		ALLOW ECF from M2	
	M4 375,000 x 56 = 21 tonnes	ALLOW ecf from M3	
(iv)	M1 840,000g is 70,000 moles of carbon		2
	M2 therefore need 23,333 moles Fe_2O_3 (but we have		
	25,000 which is an excess)		
	OR		
	M1 Need 75,000 moles carbon		
	M2 900,000g of carbon is needed (and have		
	840,000g of carbon so iron(III) oxide is in excess as		
	carbon is the limiting reactant)		
	OR		
	M4 mood 7E 000 moles of such as		
	M1 need 75,000 moles of carbon		
	M2 have 840,000÷12 OR 70,000 moles of carbon (so		
	iron(III) oxide is in excess as carbon is the limiting		
	reactant)		
L			

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom