Write your name here Surname	Other nam	es
Edexcel GCE	Centre Number	Candidate Number
Chemistr Advanced Subsidi Unit 1: The Core Pr	ary	stry
Monday 23 May 2011 – A Time: 1 hour 30 minute		Paper Reference 6CH01/01
Candidates may use a calcu	lator.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ≅ and then mark your new answer with a cross ⊠.

1 In the following outline of the Periodic Table, the letters A to D are **not** the symbols of the elements.

(1)

(1)

(1)

Select from A to D the element which

- (a) is a non-metal with a high melting temperature and boiling temperature.
- 🖾 A
- B
- C
- **D**
- (b) is in the d block of the Periodic Table.
- A
- B
- **C**
- D 🛛

(c) has a very stable electronic structure.

- 🖾 A
- B
- **C**
- D 🛛

	(d) is a	metal with a high melting temperature and boiling temperature. (1)
	A	
	B	
	C	
	D	
_		(Total for Question 1 = 4 marks)
2		ements in Group 1 of the Periodic Table have very similar chemical properties. because
	A	they have the same number of outer electrons.
	B	they have the same number of filled shells of electrons.
	C	their outer electrons are in the s sub-shell.
	D 🛛	their outer electrons have very similar shielding.
_		(Total for Question 2 = 1 mark)
3		ropean Union has set a limit (with effect from January 2010) of 3.13 ppm for portion of the toxic gas carbon monoxide in the air that we breathe. This is ent to
	A	3.13%
	B	0.0313%
	C	0.000313%
	D 🛛	0.00000313%
_		(Total for Question 3 = 1 mark)
4		vers in the UK, the legal limit of the concentration of ethanol (molar mass ol^{-1}) in the blood is 80 mg per 100 cm ³ . This is equivalent to a concentration of
	A	$17.4 \text{ mol } \text{dm}^{-3}$
	B	$1.74 \text{ mol } \text{dm}^{-3}$
	C	$0.0174 \text{ mol } \text{dm}^{-3}$
	D 🛛	$0.00174 \text{ mol } \text{dm}^{-3}$
_		(Total for Question 4 = 1 mark)

P 3 8 4 3 3 A 0 3 2 4

Turn over 🕨

3

5	An im	portant reaction which occurs in the catalytic converter of a car is
		$2CO(g) + 2NO(g) \rightarrow 2CO_2(g) + N_2(g)$
	operati	reaction, when 500 cm ³ of CO reacts with 500 cm ³ of NO at 650 °C (the ing temperature of the catalyst) and at 1 atm, the total volume of gases produced same temperature and pressure is
	🖾 A	500 cm ³
	B	750 cm ³
	C	1000 cm ³
	D D	impossible to calculate without knowing the molar volume of gases under these conditions.
		(Total for Question 5 = 1 mark)
6		a solution of barium chloride is added to sulfuric acid, a white precipitate is I. The ionic equation (including state symbols) for this reaction is
	A	$H^+(aq) + Cl^-(aq) \rightarrow HCl(s)$
	B	$Ba^+(aq) + SO_4^-(aq) \rightarrow BaSO_4(s)$
	C	$\operatorname{Ba}^{2+}(\operatorname{aq}) + 2\operatorname{SO}_4^{-}(\operatorname{aq}) \to \operatorname{Ba}(\operatorname{SO}_4)_2(\operatorname{s})$
	D 🛛	$Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$
		(Total for Question 6 = 1 mark)
7		thalpy change for the reaction between hydrochloric acid and sodium hydroxide $kJ \text{ mol}^{-1}$. Therefore
	A	the reaction is exothermic and the temperature rises.
	B	the reaction is exothermic and the temperature falls.
	C	the reaction is endothermic and the temperature rises.
	D 🛛	the reaction is endothermic and the temperature falls.

_

8 The standard enthalpy changes of formation of some sulfur species are:

Species	$\Delta H_{ m f}^{\leftrightarrow}$ / kJ mol $^{-1}$
$S_8(s)$	0
S ₈ (g)	+103
S(g)	+279

The enthalpy of atomization of sulfur is (in kJ mol⁻¹)

▲ 103 ÷ 8

B 279 ÷ 8 **B** 279 ÷ 8

C 279

 \square **D** (103 ÷ 8) + 279

(Total for Question 8 = 1 mark)

9 For which of the following reactions is the enthalpy change equal to the bond enthalpy of H–I?

 $\square A \quad HI(g) \rightarrow \frac{1}{2}H_2(g) + \frac{1}{2}I_2(s)$

 $\square \mathbf{B} \quad \mathrm{HI}(g) \to \frac{1}{2}\mathrm{H}_2(g) + \frac{1}{2}\mathrm{I}_2(g)$

- $\square C \quad HI(g) \to H(g) + I(g)$
- $\square \mathbf{D} \quad \mathrm{HI}(g) \to \mathrm{H}^{+}(g) + \mathrm{I}^{-}(g)$

(Total for Question 9 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

10 The equation for the complete combustion of pentane is

$$C_5H_{12}(g) + 8O_2(g) \rightarrow 5CO_2(g) + 6H_2O(l)$$
 $\Delta H_c^{\oplus} = -3509 \text{ kJ mol}^{-1}$

The standard enthalpy change of formation of $CO_2(g)$ is -394 kJ mol⁻¹ and that of $H_2O(l)$ is -286 kJ mol⁻¹.

The standard enthalpy change of formation of pentane (in kJ mol⁻¹) is

 \square A 5(-394) + 6(-286) + (-3509)

B 5(-394) + 6(-286) - (-3509)

 $\Box C -5(-394) - 6(-286) + (-3509)$

 \square **D** -5(-394) - 6(-286) - (-3509)

(Total for Question 10 = 1 mark)

11 All alkenes have

 \square A the same empirical formula and the same general formula.

 \square **B** the same molecular formula and the same general formula.

 \square C the same molecular formula and the same empirical formula.

 \square **D** the same empirical formula and the same structural formula.

(Total for Question 11 = 1 mark)

12 Covalent bonding results from the strong electrostatic attractions between

- A instantaneous dipoles.
- \square **B** electron clouds.
- \square C electrons in the bonding pair.
- **D** bonding pairs of electrons and nuclei.

(Total for Question 12 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

13 This qu	uestion concerns the reaction of hydrogen bromide with propene.
(a) Thi	is reaction requires (1)
A	
🖾 B	the presence of UV light.
C	the presence of a suitable catalyst.
D D	heating under reflux.
(b) The	e reaction is best described as (1)
A	nucleophilic substitution.
🖾 B	electrophilic substitution.
C C	nucleophilic addition.
🖾 D	electrophilic addition.
(c) The	e major product of the reaction will be (1)
A	1-bromopropane
🖾 B	2-bromopropane
C C	1,2-dibromopropane
🖾 D	2-bromopropene
	(Total for Question 13 = 3 marks)
14 Many	organic compounds have toxic vapours. For this reason
A 🛛	a naked flame should never be used when carrying out experiments with organic compounds.
B B	gloves should usually be worn when carrying out experiments with organic compounds.
C	a fume cupboard should be used wherever possible when carrying out experiments with organic compounds.
D D	most experiments with organic compounds are banned in schools and colleges.
	(Total for Question 14 = 1 mark)

7

	ol (molar mass 46 g mol ⁻¹) is manufactured by the hydration of ethene r mass 28 g mol ⁻¹):
	$C_2H_4 + H_2O \rightarrow C_2H_5OH$
In a ty percen	ppical process 28 tonnes of ethene produces 43.7 tonnes of ethanol. The ntage yield of ethanol in this process is
A	64%
B B	95%
C	100%
D 🛛	156%
	(Total for Question 15 = 1 mark)
	TOTAL FOR SECTION A = 20 MARKS

BLANK PAGE

SECTION B

(b) Explain why, in moving from Na to Ar, the general trend is for the first ionization energy to increase.	
energy to mercuse.	(3)
(c) Explain why the first ionization energy decreases from P to S.	(2)
(d) Estimate the value of the first ionization energy of potassium, K, and write your	
answer below.	(1)
	(1)
kJ mol ⁻¹	
(Total for Question 16 = 9 ma	arks)
	11
	Turn ove

17 0.400 g of magnesium ribbon reacted with exactly 22.2 cm³ of hydrochloric acid of concentration 1.50 mol dm⁻³.

400 cm³ of hydrogen gas was formed, the volume being measured at room temperature and pressure.

In the calculations that follow, use the following molar masses:

$$Mg = 24.0 \text{ g mol}^{-1}$$

 $Cl = 35.5 \text{ g mol}^{-1}$

(a) Calculate the amount (in moles) of magnesium used.

(b) Calculate the amount (in moles) of hydrochloric acid used.

(c) Calculate the amount (in moles) of hydrogen produced.

[Molar volume of any gas at room temperature and pressure = $24\ 000\ \text{cm}^3\ \text{mol}^{-1}$] (1)

(d) Show that the calculated amounts of magnesium, hydrochloric acid and hydrogen are consistent with the following equation for the reaction

$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$

(1)

(1)

(1)

(e) Calculate the maximum mass of magnesium chloride that would be formed in this reaction. Give your answer to **three** significant figures.

(Total for Question 17 = 7 marks)

18 Copper(II) sulfate exists as blue hydrated crystals and white anhydrous crystals. The enthalpy changes of solution for these two substances may be represented by the following simplified equations:

 $CuSO_4.5H_2O(s) + aq \rightarrow CuSO_4(aq) \qquad \Delta H_1 = +11.5 \text{ kJ mol}^{-1}$ blue $CuSO_4(s) + aq \rightarrow CuSO_4(aq) \qquad \Delta H_2 = -66.1 \text{ kJ mol}^{-1}$ white

(a) (i) Fill in the box and add labelled arrows to complete the Hess cycle to enable you to calculate $\Delta H_{\text{reaction}}$.

(3)

$$CuSO_4.5H_2O(s) \xrightarrow{\Delta H_{reaction}} CuSO_4(s) + 5H_2O(l)$$

(ii) Calculate a value for the enthalpy change $\Delta H_{\text{reaction}}$.

(2)

(b) Suggest why it is not possible to directly measure the enthalpy change for the conversion of the blue hydrated copper(II) sulfate crystals into the white anhydrous crystals.

(1)

P 3 8 4 3 3 A 0 1 4 2 4

*(c)(i) $CuSO_4.5H_2O(s) + aq \rightarrow CuSO_4(aq)$ $\Delta H_1 = +11.5 \text{ kJ mol}^{-1}$	
	Describe briefly the experimental procedure that you would use to obtain the data necessary to calculate ΔH_1 , given a known mass of hydrated copper(II) sulfate crystals, CuSO ₄ .5H ₂ O(s).	
	You should state the apparatus that you would use and any measurements that you would make.	
	You are not required to calculate the amounts of substances or to explain how you would use the data obtained.	
		(4)
(i	i) The value for the enthalpy change from (c)(i) obtained by experiments in a school laboratory is likely to be significantly different from a data book value.	
	List three possible reasons for this which do not relate to the quality of the apparatus or chemicals used or possible mistakes in carrying out the procedure.	
		(3)
1		
2		
2		
3		
	(Total for Question 18 = 13 mar	·ks)
		15

P 3 8 4 3 3 A 0 1 6 2 4

(i)	An incomplete combustion of methane, CH ₄ , results in the formation of carbon monoxide and water only.	
	Write the equation for this reaction. State symbols are not required.	(2)
(ii)	When does incomplete combustion occur?	(1)
(iii)) State two problems that result from the incomplete combustion of alkane fuels.	(2)
*(iv)) State and explain the main environmental problem arising from the complete	
	combustion of alkane fuels.	(3)

P 3 8 4 3 3 A 0 1 7 2 4

	(i)	Reaction mechanisms often involve meaning of the curly arrows shown		lain the
		incaring of the curry arrows shown below.		
		\frown		
		Arrow I	Arrow II	
Arrow	Ι			
rrow	II			
	(ii)	Using the curly arrow notation, sho methane and chlorine.	w the initiation step of the read	ction between
		incluane and emornie.		(2)

	gation steps	of the reaction between methane an	d chlorine.
Curly arrows are not	t required.		()
			(2)
(iv) Suggest why a small	amount of	UV light can result in the formation	of a large
amount of product.			
			(1)
(v) Ethane is a trace pro	duct of this	reaction. By means of an equation,	show how
the ethane is formed.		reaction. By means of an equation,	
			(1)
d) Scientists never detect mo chlorination of methane.	olecular hyd	lrogen, H ₂ , amongst the products of	the
Use the data below to sug	ngest why th	nis is so	
-			т 1–1
The frequency of UV light	nt used corre	esponds to an energy of about 400 k	J mol ⁻ .
	Bond	Bond enthalpy/kJ mol ⁻¹	
	С—Н	435	
	A1 ~1		
	Cl—Cl	243	
	Cl—Cl	243	(2)
	Cl—Cl	243	(2)
	CI-CI	243	(2)
	CI-CI	243	(2)
	CI-CI	243	(2)
	CICI	243 (Total for Question	

20 Metals are good conductors of heat and electricity and usually have high melting temperatures and boiling temperatures. (a) (i) Describe the **structure** of a metal. (2) (ii) Describe the **bonding** in a metal. (2) (b) Explain why the melting temperature of magnesium (650 °C) is much higher than that of sodium (98 °C). (3)

c) Explain how metals conduct electricity.	(2)
	(Total for Question 20 = 9 marks)
	TOTAL FOR SECTION B = 60 MARKS
	TOTAL FOR PAPER = 80 MARKS

P 3 8 4 3 3 A 0 2 2 2 4

BLANK PAGE

P 3 8 4 3 3 A 0 2 3 2 4

BLANK PAGE

		I															-			1								
I he Periodic lable of Elements	0 (8)	(18)	4.0 He	helium 2	20.2	Ne	neon 10	39.9	Ar	argon 18	83.8	Кr	krypton 36	131.3	Xe	xenon 54	[222]	Rn	radon 86		ted							
	7			(17)	19.0	Ŀ	fluorine 9	35.5	บ	chlorine 17	79.9	Br	bromine 35	126.9	_	iodine 53	[210]	At	astatine 85		een repor		175	Lu	lutetium 71	[257]	ר י	lawrencium 103
	9			(16)	16.0	0	oxygen 8	32.1	S	sulfur 16	79.0	Se	selenium 34	127.6	Те	tellurium 52	[209]	Ъ	polonium 84		116 have b ticated	5	173	۲b	ytterbium 70	[254]	°,	nobelium 102
	5			(15)	14.0	z	nitrogen 7	31.0	٩	phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		tomic numbers 112-116 hav		169	Tm	thulium 69	[256]	PW	mendelevium 101
	4			(14)	12.0	υ	carbon 6	28.1		silicon 14	72.6	Ge	germanium 37	118.7	Sn		207.2	Pb	lead 82		atomic nur hut not fi		167	Ъ	erbium 68	[253]		termium 100
	m			(13)	10.8	В	boron 5	د 27.0	AI	aluminium 13	69.7	Ga	gallium 31	114.8	Ľ	indium 49	204.4	F	thallium 81		Elements with atomic numbers 112-116 have been reported but not fully authenticated	165	Ч	holmium 67	[254]	ĒS	einsteinium 99	
										(12)	65.4	Zn	zinc 30	112.4	PC	cadmium 48	200.6	Hg	mercury 80	Elem	Elem		163	D	dysprosium 66	[251]	ָּב	californium einsteinium 98 99
										(11)	63.5	Cu	copper 79	107.9	Ag	silver 47	197.0	Au	gold 79	[272]	Rg	111	159		terbium 65	[245]		perketum 97
										(10)	58.7	Ż	nickel 28	106.4	РЧ	palladium 46	195.1	F	platinum 78		DS dametaditium	110	157	Pg	gadolinium 64			aunum 96
										(6)	58.9	ů	cobalt 77	102.9	Rh	rhodium 45	192.2	느	iridium 77	[268]	Mt	109	152	Eu	europium 63	[243]	Am	americium 95
			1.0 H hydrogen	1	(X)						55.8	Fe	iron 26	101.1	Ru	5	190.2	0s	osmium 76	[277]	<u> </u>	150	sar		[242]	P n	95 94 95	
										(2)	54.9	Mn	manganese 75	[98]	۲ ۲	molybdenum technetium 42 43	186.2	Re	rhenium 75	-		107	[147]	Рт	praseodymium neodymium promethium 59 60 61	[237]	dN.	neptunium 93
					mass	atomic symbol	name atomic (proton) number			(9)	52.0	Ъ	chromium 74	95.9	Mo	molybdenum 42	183.8	≯	tungsten 74	[366]	Sg	106	144	PN	neodymium 60	~	⊃ .	uranıun 92
				Key	relative atomic mass					(2)	50.9	>	vanadium 23	92.9	qN	niobium 41	180.9	Ta	tantalum 73		Db		141	Pr	praseodymium 59	[231]	Pa	protactinium 91
					relat					(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Hf	hafnium 72	[261]	Rf nitherfordium	104	140	S	cerium 58	232		thorium 90
										(3)	Ļ	Sc	scandium 21	88.9	≻	yttrium 39	138.9	La*	lanthanum 57	[227]	Ac*	n actinium 89	-	es				
	2			(2)	0.6	Be	beryllium 4	24.3	Mg	magnesium 12		Ca	calcium 20	87.6	Sr	strontium 38	137.3	Ba	barium 56	[226] Ra	Ra Tadium			* Lanthanide series	* Actinide series			
	.				6.9	בי	lithium 3	23.0	Na	sodium 11	39.1	¥	potassium 19	85.5	Вb	rubidium 37	132.9	S	caesium 55	[223]	Fr francium	87		* Lanth * Actin	* Actin			

The Periodic Table of Flements