

Chemistry A

Advanced GCE Unit **F325:** Equilibria, Energetics and Elements

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

	Ques	tion	Answer	Mark	Guidance
1	(a)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 8.3×10^4 OR 83333 award 2 marks THEN IF units are dm ⁶ mol ⁻² s ⁻¹ , award 1 further mark $k = \frac{rate}{[H_2(g)] [NO(g)]^2}$ OR $\frac{3.6 \times 10^{-2}}{(1.2 \times 10^{-2}) \times (6.0 \times 10^{-3})^2}$		ALLOW 1 mark for 8.3 × 10 [×] with no working (power of 10 is error)
			✓ = 8.3 × 10 ⁴ OR 83000 OR 83333 ✓	2	 ALLOW 2 SF up to calculator value of 8.333333333333333333333333333333333333
			units: dm ⁶ mol ^{−2} s ^{−1} ✓	1	ALLOW dm ⁶ , mol ⁻² and s ⁻¹ in any order, eg mol ⁻² dm ⁶ s ⁻¹ DO NOT ALLOW other units (Rate equation supplied on paper – not derived from data)
	(b)	(i)	effect on rate × 2 ✓	1	ALLOW 'doubles' OR <i>rate</i> = 7.2×10^{-2} (mol dm ⁻³ s ⁻¹)
		(ii)	effect on rate × ¼ OR x 0.25 ✓	1	ALLOW 'a quarter' OR decrease by $\frac{1}{4}$ OR decrease by 0.25 OR rate decreases by 4 OR decrease by 75% OR rate = 0.9×10^{-2} (mol dm ⁻³ s ⁻¹) DO NOT ALLOW just 0.5^2 of rate OR rate decreases by 2^2
		(iii)	effect on rate × 64 ✓	1	ALLOW rate = 2.3(04) (mol dm ⁻³ s ⁻¹) DO NOT ALLOW just 'increases by 4 and then by 16 / 4^2 OR increases by 4^3

	Ques	tion	Answer	Mark	Guidance	
1	(c)	(i)	 (initial) rate increases AND more frequent collisions OR more collisions per second/time ✓ 	1	 BOTH points required for mark ALLOW rate increases AND concentration increases For concentration increases, ALLOW particles closer together OR less space between particles DO NOT ALLOW just more collisions OR collisions more likely 	
		(ii)	rate constant does not change ✓	1		
	(d)		step 1: H ₂ (g) + 2 NO(g) → N ₂ O(g) + H ₂ O(g) LHS of step one \checkmark step 2: H ₂ (g) + N ₂ O(g) → N ₂ (g) + H ₂ O(g) rest of equations for step 1 AND step 2 \checkmark	2	State symbols NOT required For 'rest of equations', This mark can only be awarded if 1st mark can be awarded ALLOW other combinations of two steps that together give the overall equation (shown above part in scoris window), <i>eg</i> step 1: $\longrightarrow N_2(g) + \frac{1}{2}O_2(g) + H_2O(g)$ step 2: $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(g)$ step 1: $\longrightarrow H_2O_2(g) + N_2(g)$ step 2: $H_2(g) + H_2O_2(g) \longrightarrow 2H_2O(I)$ There may be others with species, such as $H_2N_2O_2$ and HNO. Provided the two steps add up to give the overall equation AND charges balance, the 2nd mark can be awarded	
		[Total	10		

	Question	Answer	Mark	Guidance	
2	(a)	Fe: $(1s^22s^22p^6)3s^23p^63d^64s^2 \checkmark$ Fe ²⁺ : $(1s^22s^22p^6)3s^23p^63d^6 \checkmark$	2	ALLOW 4s before 3d, i.e. $(1s^22s^22p^6)3s^23p^64s^23d^6$ ALLOW 4s ⁰ ALLOW subscripts IGNORE $1s^22s^22p^6$ is written out a second time	
	(b)	coloured (compound/complex/precipitate/ions) OR catalyst ✓	1	IGNORE 'variable oxidation states' but ALLOW the idea that Fe ²⁺ can react to form an ion with a different charge/oxidation state. 'ion' is essential: 'atom' or 'metal' is not sufficient IGNORE partially filled d sub-shell/d orbital (question refers to property of Fe ²⁺)	
	(c)	Fe oxidised from +2 to +3 \checkmark Cr reduced from +6 to +3 \checkmark	2	 CHECK and credit oxidation numbers on equation ALLOW Fe²⁺ oxidised to Fe³⁺ ALLOW Cr⁶⁺ reduced to Cr³⁺ ALLOW + sign after number in oxidation number, <i>ie</i> 2+, etc ALLOW 1 mark only if oxidation numbers given with no identification of which species has been oxidised or reduced, <i>ie</i> Fe goes from +2 to +3 AND Cr goes from +6 to +3 Fe reduced from +2 to +3 AND Cr oxidised from +6 to +3 (<i>oxidation and reduction the wrong way around</i>) DO NOT ALLOW just 'Fe is oxidised and Cr reduced' IGNORE other oxidations numbers (even if wrong) IGNORE any references to electrons 	

Que	stion	Answer		Guidance	
2 (d)		$(\mathcal{K}_{stab} =) \frac{\left[[Fe(NH_3)_6]^{2^+} \right]}{\left[[Fe(H_2O)_6]^{2^+} \right] \left[NH_3 \right]^6}$ On top , ONLY $[Fe(NH_3)_6]^{2^+}$ shown AND on bottom, $[Fe(H_2O)_6]^{2^+}$ AND $[NH_3]^6$ shown \checkmark correct use of square brackets and double square brackets in expression \checkmark	2	IGNORE state symbols ALLOW 1 mark if complete expression with correct use of double brackets is shown but upside down DO NOT ALLOW round brackets for concentrations and complex ions ALLOW for 1 mark ($\mathcal{K}_{stab} = $) $\frac{\left[\left[Fe(NH_3)_6\right]^{2+}\right]\left[H_2O\right]^6}{\left[\left[Fe(H_2O)_6\right]^{2+}\right]\left[NH_3\right]^6}$	
(e)	(i)	O₂/oxygen bonds to Fe ²⁺ /Fe(II)/Fe ✓ When required, O₂ substituted OR O₂ released ✓	2	 ANNOTATE WITH TICKS AND CROSSES, etc ALLOW O₂ binds to Fe²⁺ OR O₂ donates electron pair to Fe²⁺ ALLOW O₂ bonds to metal ion/metal DO NOT ALLOW just O₂ bonds to haemoglobin OR O₂ bonds to complex ALLOW bond breaks between O₂ and Fe²⁺ when O₂ required OR O₂ replaces H₂O OR vice versa ALLOW O₂ replaces CO₂ OR vice versa ALLOW O₂ replaces a ligand OR vice versa IGNORE just 'by ligand substitution' (in the question) 	

	Ques	tion	Answer	Mark	Guidance	
2	(e)	(ii)	(For complex) with CO, stability constant is greater (than with complex in O ₂) OR with CO, stability constant is high ✓ (Coordinate) bond with CO is stronger (than O ₂) OR bond with CO is strong ✓	2	 ANNOTATE WITH TICKS AND CROSSES, etc Comparison of CO and O₂ is NOT required ALLOW stability constant with/of CO is greater IGNORE (complex with) CO is more stable ALLOW bond with CO is less likely to break OR bond with CO more likely to form OR 'CO cannot be removed' OR idea that attachment of CO is irreversible OR CO is a stronger ligand (than O₂) OR CO has greater affinity for ion/metal/haemoglobin (than O₂) IGNORE CO bonds more easily 	
	(f)	(i)	Pt ²⁺ /Pt is +2/2+, 2 x Cl ⁻ –2 ✓	1	DO NOT ALLOW response in terms of Cl ₂ rather than Cl ⁻ DO NOT ALLOW 'charges cancel' without the charges involved being stated	

	Ques	tion	Answer	Mark	Guidance
2	(f)	(ii)	Hiswei H ₃ N,Pt Cl Cl Cl Cl Cl Cl NH ₃ Cl Pt NH ₃ Cl Pt NH ₃ Cl Pt Cl NH ₃ Cl NH ₃	3	IGNORE any charge, ie Pt ²⁺ OR CI [−] , even if wrong IGNORE any angle, even if wrong ACCEPT bonds to H ₃ N (does not need to go to 'N') Assume that a solid line is in plane of paper Each structure must contain 2 'out wedges' AND 2 'in wedges' or dotted lines OR 4 solid lines at right angles (all in plane of paper) DO NOT ALLOW any structure that cannot be in one plane DO NOT ALLOW any structure with Cl ₂ as a ligand DO NOT apply ECF from one structure to the other ALLOW coordinate bonds shown on diagrams provide that they start from a lone pair ALLOW 'dative covalent bond' or 'dative bond' as alternative for 'coordinate bond IGNORE cis and trans labels (even if incorrect) IGNORE incorrect connectivity to NH ₃ , ie ALLOW NH ₃ —
		(iii)	platin binds to DNA (of cancer cells) OR platin stops (cancer) cells dividing/replicating ✓	1	

Question	Answer	Mark	Guidance
2 (g)	Answer 1,1-cyclobutanedicarboxylate ion $\downarrow \downarrow \downarrow \bigcirc 0^{-}$ Correct charge required (could also be 2- outside square brackets) carboplatin (<i>cis</i> isomer shown below) $\downarrow \downarrow \downarrow \bigcirc 0^{-}$ $\downarrow \downarrow \downarrow \bigcirc 0^{-}$	<u>Магк</u> 2	Must show cyclobutane ring with both COO ⁻ groups bonded to same carbon ALLOW COO ⁻ OR CO ₂ ⁻ for each carboxylate ion ALLOW structures showing CH ₂ or C atoms provided it is clear that C skeleton is shown, Note: H atoms are not required if C atoms shown, <i>ie</i>
			$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & X \end{array} \qquad \qquad$
	Total	18	

	Ques	tion	Answer	Mark	Guidance
3	(a)	(i)	HOCH ₂ COOH + NaOH → HOCH ₂ COONa + H ₂ O \checkmark	1	ALLOW: $HOCH_2COOH + OH^- \rightarrow HOCH_2COO^- + H_2O$ ALLOW: $H^+ + OH^- \rightarrow H_2O$ DO NOT ALLOW molecular formulae (cannot see which OH has reacted)
		(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 0.142 (mol dm ⁻³), award 2 marks amount of HOCH ₂ COOH = $0.125 \times \frac{25.0}{1000}$ = 0.003125 (mol) \checkmark		IF there is an alternative answer, check to see if there is any ECF credit possible using working below
			concentration NaOH = $0.003125 \times \frac{1000}{22.00}$ = 0.142 (mol dm ⁻³) \checkmark	2	ALLOW ECF: answer above × $\frac{1000}{22.00}$ ALLOW 2 SF: 0.14 to calculator value: 0.142045454 If candidate has written in (a)(i): HOCH ₂ COOH + 2NaOH, mark by ECF: concentration NaOH = 2 × 0.003125 × $\frac{1000}{22.00}$ = 0.284 (mol dm ⁻³)
		(iii)	Vertical section matches the (pH) range (of the indicator) OR colour change (of the indicator) OR end point (of the indicator) ✓	1	 ALLOW stated pH range for vertical section at about 7–10, 6–10, etc ie ALLOW 'pH range must be about 7–10' ALLOW 'pH changes rapidly' for vertical section ALLOW 'equivalence point' for vertical section, <i>ie</i> ALLOW equivalence point matches the (pH) range, <i>etc</i> DO NOT ALLOW just 'end point matches (pH) range' DO NOT ALLOW just 'indicator matches vertical section' Response must link either the pH range or colour change or end point with the vertical section / pH range ~ 7–10

	Quest	tion	Answer		Guidance
3	(b)	(i)	$(K_{a} =) \frac{\left[H^{+}\right] \left[HOCH_{2}COO^{-}\right]}{\left[HOCH_{2}COOH\right]} \checkmark$	1	IGNORE state symbols IGNORE $\frac{\left[H^{+}\right]^{2}}{\left[HOCH_{2}COOH\right]}$ in (i) but ALLOW in (ii)
		(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.46 x 10 ⁻⁴ , award 2 marks THEN IF units are mol dm ⁻³ , award 1 further mark 		IF there is an alternative answer, check to see if there is any ECF credit possible using working below UNITS can be credited with no numerical answer
			$K_{\rm a} = \frac{0.00427^2}{0.125} = 1.46 \times 10^{-4} \checkmark$	2	ALLOW 2 SF: 0.0043 up to 0.004265795188 (calc value) IF candidate has rounded to 0.00427 (mol dm ⁻³) in 1st response, credit EITHER 2 SF: 1.5×10^{-4} up to 1.458632×10^{-4} (from 0.00427) OR 2 SF: 1.5×10^{-4} up to $1.455760687 \times 10^{-4}$ (from unrounded calculator value of 0.004265795188)
			units: mol dm ⁻³ ✓	1	ALLOW calculation based on equilibrium conc of glycolic acid as $0.125 - [H^+]$: Using $[H^+] = 0.00427$, $K_a = \frac{0.00427^2}{0.125 - 0.00427} = 1.51 \times 10^{-4}$ For UNITS this is the ONLY correct answer
		(iii)	% dissociation = $\frac{0.00427}{0.125} \times 100 = 3.4$ (%) \checkmark Assume working from EITHER from a rounded [H ⁺] OR unrounded calculator value of b(ii) [H ⁺]	1	ALLOW ECF using calculated [H ⁺] from b(ii), ALLOW 2 SF: 3.4 % up to calculator value <i>Note:</i> [H ⁺] from b(ii) displayed <i>at top of answer window</i> <i>DO NOT MARK THIS TWICE!</i>

	Quest	tion	Answer	Mark	Guidance
3	(c)		ONE mark for equilibrium expression equilibrium: $HOCH_2COOH \Rightarrow H^+ + HOCH_2COO^-\checkmark$	1	ANNOTATE WITH TICKS AND CROSSES, etc DO NOT ALLOW H ⁺ , A ⁻ and HA ALLOW < - > as alternative for equilibrium sign
			Four marks for action of buffer		ALLOW response in terms of H ⁺ , A ⁻ and HA Equilibrium responses must refer back to a written equilibrium: IF more than one equilibrium shown, assume correct one
			HOCH ₂ COOH reacts with added alkali OR HOCH ₂ COOH + OH ⁻ \rightarrow OR added alkali reacts with H ⁺ OR H ⁺ + OH ⁻ $\rightarrow \checkmark$		ALLOW weak acid reacts with added alkali DO NOT ALLOW acid reacts with added alkali
			\rightarrow HOCH ₂ COO ⁻ OR Equilibrium \rightarrow right \checkmark		
			HOCH ₂ COO [−] reacts with added acid \checkmark → HOCH ₂ COOH OR Equilibrium → left \checkmark	4	ALLOW conjugate base reacts with added acid DO NOT ALLOW salt/base reacts with added acid
			Two marks for preparation of buffer Ammonia reacted with an excess of glycolic acid OR some glycolic acid remains \checkmark HOCH ₂ COOH + NH ₃ \rightarrow HOCH ₂ COONH ₄ \checkmark	2	ALLOW as products HOCH ₂ COO ⁻ + NH ₄ ⁺ ALLOW \Rightarrow sign instead of \rightarrow
	(d)		Base 1 + Acid 2 \Rightarrow Acid 1 + Base 2 1st mark for identifying acids and bases. \checkmark 2nd mark for correct pairing (ie numbers) \checkmark	2	ALLOW: Base 2 + Acid 1 ⇒ Acid 2 + Base 1

	Question	Answer	Mark	Guidance
3	(e)	$2\text{HSCH}_2\text{COO}^- + \text{R}-\text{S}-\text{S}-\text{R}$ $\longrightarrow^-\text{OOCCH}_2\text{S}-\text{SCH}_2\text{COO}^- + 2\text{R}-\text{SH} \checkmark$ $2\text{R}-\text{SH} + \text{H}_2\text{O}_2 \longrightarrow \text{R}-\text{S}-\text{S}-\text{R} + 2\text{H}_2\text{O} \checkmark$	2	ALLOW $(SCH_2COO^-)_2$ ALLOW equation with ammonium salt, ie: $2HSCH_2COONH_4 + \dots + H_4NOOCCH_2S-SCH_2COONH_4 + \dots + H_4NOOCCH_2S-SCH_2COONH_4 + \dots + \dots + \dots + H_4NOOCCH_2S-SCH_2COONH_4 + \dots + $
		Total	20	

(Ques	tion	Answer	Mark	Guidance
4	(a)	(i)	Complete circuit with electrodes to voltmeter AND salt bridge between solutions ✓ Sn ⁴⁺ /Sn ²⁺ half cell with Pt electrode AND both solutions labelled as 1 mol dm ⁻³ / 1M H ⁺ /H ₂ half cell with Pt electrode AND H ⁺ solution labelled as 1 mol dm ⁻³ / 1M ✓	3	 ANNOTATE WITH TICKS AND CROSSES, etc circuit shown must be complete, <i>ie</i> must be capable of working salt bridge must be labelled and must dip into both solutions ALLOW concentration label of 'equimolar' or similar wording for Sn⁴⁺/Sn²⁺ half cell ALLOW any strong acid IF both half cells are correct with no concentrations, ALLOW 1 out of the 2 marks available for the 2 half cells
		(ii)	$\begin{array}{rcl} 2Cr + 3Sn^{4+} & \rightarrow & 2Cr^{3+} + 3Sn^{2+} \checkmark \\ Cr + 3Cu^{+} & \rightarrow & Cr^{3+} + 3Cu \checkmark \\ Sn^{2+} + 2Cu^{+} & \rightarrow & Sn^{4+} + 2Cu \checkmark \\ \end{array}$ Conditions not standard OR concentrations not 1 mol dm ⁻³ \scrimes High activation energy OR slow rate \scrimes \	5	IGNORE any stated temperature or pressure, even if wrongANNOTATE WITH TICKS AND CROSSES, etcCorrect species AND balancing needed for each markALLOW equations as shown with equilibrium signALLOW multiples but electrons must not be shownIF three equations have correct species but no balancing,AWARD 1 markALLOW not favoured kinetically
	(b)	(i)	$CH_3OH + 1\frac{1}{2}O_2 \rightarrow CO_2 + 2H_2O \checkmark$	1	Correct species AND balancing needed ALLOW multiple, <i>ie</i> $2CH_3OH + 3O_2 \rightarrow 2CO_2 + 4H_2O$ ALLOW CH_4O for formula of methanol
		(ii)	$CH_3OH + H_2O \rightarrow 6H^+ + 6e^- + CO_2 \checkmark$	1	
		(iii)	less CO₂ OR less greenhouse gases ✓ greater efficiency ✓	2	ALLOW no CO ₂ OR no greenhouse gases ALLOW (very) efficient IGNORE less pollution OR 'renewable fuels'
		(iv)	methanol is a liquid AND methanol is easier to store/transport ✓	1	Both points required for mark Response MUST state that methanol is a liquid IGNORE methanol has a higher boiling point Assume that 'it' refers to methanol IGNORE safety issues, <i>eg</i> H ₂ leakage, flammability, explosive
			Total	13	

Qı	estior	Answer	Mark	Guidance
5	(a)	 A: forms fewer moles/molecules of gas ✓ B: forms gas from a liquid ✓ C: forms liquid from gases ✓ D: forms more moles/molecules of gas ✓ 	4	Note: Responses must imply the key difference between thesides of the equationIGNORE comments about C(s)
	(b)	$\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants})$ = 40 + 214 - 89 = 165 (J K ⁻¹ mol ⁻¹) = 0.165 (kJ K ⁻¹ mol ⁻¹) \checkmark At 25 °C, ΔG = +178 - 298 × 0.165 \checkmark = (+)129 \checkmark units: kJ mol ⁻¹ \checkmark OR (+)129,000 \checkmark units: J mol ⁻¹ \checkmark	1	ANNOTATE WITH TICKS AND CROSSES, etc Mark is for the working line: 40 + 214 - 89 = 165 UNITS have a separate mark ALLOW 129 to calculator value of 128.83 DO NOT ALLOW 128 (incorrect rounding) IF 25 °C used rather than 298 K, credit by ECF, calculated ΔG = 174 to calculator value of 173.875 ENTROPY APPROACH
		As $\Delta G > 0$, reaction is not feasible OR as $\Delta G > 0$, CaCO ₃ is stable \checkmark Minimum temperature for feasibility when $0 = \Delta H - T\Delta S$ OR $\Delta H = T\Delta S$ OR $T = \frac{\Delta H}{\Delta S} \checkmark$ $= \frac{178}{0.165} = 1079$ K OR 806 °C \checkmark The units must be with the stated temperature	4	ALLOW At 25 °C, $\Delta S_{\text{total}} = 0.165 - \frac{178}{298} \checkmark$ = -0.432 \checkmark kJ K ⁻¹ mol ⁻¹ \checkmark OR -432 \checkmark J K ⁻¹ mol ⁻¹ \checkmark As $\Delta S < 0$, reaction is not feasible \checkmark <i>ENTROPY APPROACH</i>
		Tota	al 11	

	Question		Answer	Mark	Guidance	
6	(a)	(i)	(K _w =) [H⁺(aq)] [OH⁻(aq)] ✓	1	IGNORE state symbols ALLOW $[H_3O^+(aq)]$ $[OH^-(aq)]$	
		(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.3×10^{-10} (mol dm ⁻³), award 2 marks IF answer = 2.34×10^{-10} (mol dm ⁻³), award 1 mark		IF there is an alternative answer, check to see if there is any ECF credit possible using working below ANNOTATE WITH TICKS AND CROSSES, etc	
			[H ⁺] = 10^{-pH} = 4.27 × 10^{-5} (mol dm ⁻³) \checkmark		ALLOW 4.3×10^{-5} up to calculator: $4.265795188 \times 10^{-5}$ ALLOW 0.0000427	
			$[OH^{-}] = \frac{1.0 \times 10^{-14}}{4.27 \times 10^{-5}}$ = 2.34 × 10 ⁻¹⁰ = 2.3 × 10 ⁻¹⁰ (mol dm ⁻³) ✓	2	Answer MUST be to 2 SF (in question) ALLOW = 2.3×10^{-x} (mol dm ⁻³) for 1 mark (must be a negative power) ALLOW alternative approach based on pOH:	
					pOH = $14 - 4.27 = 9.63 \checkmark (DO NOT ALLOW 9.6)$ [OH ⁻] = $10^{-pOH} = 10^{-9.63} = 2.3 \times 10^{-10} \text{ (mol dm}^{-3}) \checkmark$	
	(b)	(i)	Endothermic because <i>K</i> _w increases with temperature ✓	1	Endothermic AND reason required for the mark ALLOW Endothermic because increasing temperature shifts equilibrium/reaction to the right	
		(ii)	$K_{\rm w}$ value from graph from 2.2 to 2.6 × 10 ⁻¹⁴ (mol ² dm ⁻⁶) \checkmark		ANNOTATE WITH TICKS AND CROSSES, etc Actual $K_w = 2.38 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$	
			Using 2.4 × 10 ⁻¹⁴ , $[H^+] = \sqrt{2.4 \times 10^{-14}}$ OR 1.55 × 10 ⁻⁷ ✓		For this mark, candidate must use a value between 2.0 and 3.0×10^{-14} (mol ² dm ⁻⁶), <i>ie</i> from the approximately correct region of the graph,	
			pH = −log $(1.55 \times 10^{-7}) = 6.81$ (using $K_w = 2.4 \times 10^{-14}) \checkmark$	3	ALLOW 6.8 up to calculator value Note: You will need to calculate the pH value from the candidate's estimate of K_w at 37 °C before awarding the 3rd marking point ONLY award an ECF pH mark if candidate has generated a value of [H ⁺] by attempting to take a square root of a value between 2.0 and 3.0 × 10 ⁻¹⁴	

	Question		Answer	Mark	Guidance
6	(b)	(iii)	(Work is) inaccurate OR invalid because <i>K</i> _w varies with temperature ✓	1	Response requires reason for inaccuracy/invalidity in terms of K_w ALLOW incorrect with reason IGNORE unreliable ALLOW inaccurate because wrong K_w was used For K_w varies with temperature, ALLOW equilibrium shifts with temperature
	(c)		Acid and alkali mixed ✓		ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 'base' for 'alkali throughout ALLOW if mentioned anywhere which could be within a definition for enthalpy change of neutralisation
			Amounts of acid AND alkali stated ✓		Amounts could be expressed as amounts, moles, volumes OR concentrations
			Temperature taken at start AND finish ✓		ALLOW temperature change
			energy, $Q = mc \Delta T$ OR in words AND meaning of <i>m</i> , <i>c</i> AND ΔT given \checkmark		m = mass/volume of solution/reactants/mixture, etc (but NOT surroundings) c = (specific) heat capacity (of solution/water) OR 4.18/4.2 ΔT = temperature change
			Energy scaled up to form 1 mol of water \checkmark		ALLOW divide energy by moles
			$\Delta H_{\text{neut}} = -\text{energy change } \checkmark$	6	ALLOW '' sign shown in earlier part, ie $\Delta H_{\text{neut}} = -\frac{Q}{n}$ ALLOW a statement linking ΔH with temperature change, <i>ie</i> : IF temperature increases, ΔH_{neut} is -ve OR IF temperature decreases, ΔH_{neut} is +ve

Question	Answer	Mark	Guidance
Question 6 (d)	AnswerIonic radius Potassium ion OR K ⁺ OR K ion is smaller OR K ⁺ has greater charge density \checkmark Lattice enthalpy Lattice enthalpy of KF is more negative than RbF \checkmark OR 	Mark	GuidanceANNOTATE WITH TICKS AND CROSSES, etcThroughout question, ORA in terms of Rb* Throughout question, ALLOW energy for enthalpyDO NOT ALLOW potassium OR K OR reference to atoms (<i>ie</i> reference to ions is required throughout a response)ALLOW lattice enthalpy of KF > lattice enthalpy of RbFALLOW more energy needed to separate K* AND F- IGNORE KF has stronger bondsALLOW ΔH (hydration) of K* > ΔH (hydration) of Rb*ALLOW more energy needed to separate K* AND H2O IGNORE K* has a stronger bond to H2OALLOW a correct attempt to link the contribution of lattice
(e)	(During dissolving,) entropy/disorder increases OR disorder increases \checkmark $T\Delta S > \Delta H$ OR $T\Delta S$ is more positive than ΔH OR $\Delta H - T\Delta S$ is negative \checkmark	2	enthalpy and hydration enthalpy to ΔH (solution), <i>ie</i> lattice enthalpy is a more important factor than hydration enthalpy ALLOW entropy change is positive OR ΔS is positive OR ΔS is positive ALLOW ΔS (system) > $\Delta H/T$ ALLOW ΔS (system) is more positive than $\Delta H/T \checkmark$ ALLOW ΔS (system) + ΔS (surroundings) is positive ALLOW ΔS (system) + ΔS (surroundings) is positive ALLOW Energy contribution from increase in entropy is greater than decrease in energy from enthalpy change OR entropy change outweighs enthalpy change
	Total	20	IGNORE ΔG is negative

Question		on	Answer	Mark	Guidance
7	(a)	(i)	amount $S_2O_3^{2-}$ used = 0.00100 × $\frac{24.6}{1000}$ = 2.46 × 10 ⁻⁵ mol \checkmark amount O_2 in 25 cm ³ sample = $\frac{2.46 \times 10^{-5}}{4}$ = 6.15 × 10 ⁻⁶ mol \checkmark Concentration of O_2 in sample = 6.15 × 10 ⁻⁶ × $\frac{1000}{25}$ = 2.46 × 10 ⁻⁴ (mol dm ⁻³) \checkmark mass concentration of O_2 in mg dm ⁻³ = 2.46 × 10 ⁻⁴ × 32 g = 7.872 × 10 ⁻³ (g dm ⁻³) = 7.872 (mg dm ⁻³) \checkmark	4	ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 0.0000246 (mol) ECF = $\frac{\text{answer above}}{4}$ ALLOW 0.00000615 g ECF answer above × $\frac{1000}{25}$ ALLOW 0.000246 g ECF = answer above × 32 x 1000 ALLOW 7.9 OR 7.87 ALLOW 2 SF up to calculator value Must be in mg for mark Note: Candidate may work out steps 3 and 4 in the opposite order, <i>ie</i> mass of O ₂ in sample = 6.15 x 10 ⁻⁶ × 32 × 1000 = 1.968 × 10 ⁻¹ mg mass concentration of O ₂ in mg dm ⁻³ = 1.968 x 10 ⁻¹ × $\frac{1000}{25}$ = 7.872 (mg dm ⁻³)
		(ii)	Comment 7.872 > 5 so fish can survive ✓	1	ECF If final answer > 5 fish can survive If final answer < 5 fish cannot survive
	(b)	(i)	NO ✓	1	ALLOW N ₂ H ₂

C	Question		Answer	Mark	Guidance
7	(b)	(ii)	$2H_2O + 2I^- + 2NO_2^- \longrightarrow 2NO + I_2 + 4OH^-$ OR $2H^+ + 2I^- + 2NO_2^- \longrightarrow 2NO + I_2 + 2OH^-$ species \checkmark balance \checkmark	2	IGNORE state symbols ALLOW multiples For species ONLY, IGNORE any extra H ₂ O or e ⁻ on either side of the equation ALLOW on LHS: 2HI + 2NO ₂ ⁻ OR 2I ⁻ + 2HNO ₂ ALLOW species and equation involving N ₂ H ₂ : $6H_2O + 8I^- + 2NO_2^- \longrightarrow N_2H_2 + 4I_2 + 10OH^-$ OR $6H^+ + 8I^- + 2NO_2^- \longrightarrow N_2H_2 + 4I_2 + 4OH^-$ species ✓ balance ✓
			Total	8	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

