Oxford Cambridge and RSA

GCE

Chemistry B

Unit H433A/01: Fundamentals of chemistry
Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations available in RM Assessor

Annotation	Meaning
	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given
BP	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
$/$	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Statements which are irrelevant
IGNORE	Answers that can be accepted
ALLOW	Words which are not essential to gain credit
()	Underlined words must be present in answer to score a mark
ECF	Alternative wording
ORA	Oreverse argument
ORA	

Subject-specific Marking Instructions

Treatment of chemical equations:

- Do not allow unnecessary brackets (eg 2(KCI))
- Do not allow wrong element symbols (eg CL)
- Do not allow superscripts for subscripts
- Allow one missing + or arrow if meaning is clear.

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

Section A

Q	Key		Mark	
1	C		1	
2	B		1	
3	D		1	
4	C		1	
5	A		1	
6	C		1	
7	B		1	
8	B		1	
9	D		1	
10	C		1	
11	C		1	
12	B		1	
13	A		1	
14	B		1	
15	A		1	
16	A		1	
17	B		1	
18	B		1	
19	D		1	
20	D		1	
21	C		1	
22	C		1	
23	A		1	
24	A		1	
25	B		1	
26	D		1	
27	B		1	
28	B		1	
29	A		1	
30	C			

Section B

Question			Answer	Marks	Guidance
31	(a)		$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{OH}^{-}+\mathrm{H}_{2} \checkmark$ Oxidation state of hydrogen/ H has decreased/goes from +1 to zero.	2	ALLOW $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$ ALLOW $\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-} \rightarrow 1 / 2 \mathrm{H}_{2}+\mathrm{OH}^{-}$ ALLOW Water/ H^{+}(ions)/ other species shown in (wrong) equation have gained electrons NOT just 'reduction is gain of electrons'
31	(b)		FIRST CHECK ANSWER ON ANSWER LINE If answer $=0.15$ award 3 marks If sf incorrect, award 2 marks to anything rounding to 0.15 . Moles of $\mathrm{NaCl}=2.4 \times 10^{5} / 58.5$ OR $4.1026 \times 10^{3} \checkmark$ Moles of Cl_{2} produced $0.5 \times 2.4 \times 10^{5} / 58.5$ OR $2.0513 \times$ $10^{3} \checkmark$ Mass $\mathrm{Cl}_{2}=\left\{0.5 \times 2.4 \times 10^{5} / 58.5\right\} \times 71=0.15$ tonnes evaluated to $2 \mathrm{sf} \checkmark$	3	ALLOW ecf 1. Calculation of moles NaCl 2. Use of ratio $\div 2$ or $\times 0.5$ for a calculated no of moles 3. Moles Cl_{2} to mass, unit conversion and 2 sf
31	(c)		Chlorine is toxic AW \checkmark	1	Incorrect refs to physical state/ flammability are CON IGNORE harmful
31	(d)	(i)	$\curvearrowleft \mathscr{C l} \quad \longrightarrow \quad 2 \mathrm{Cl} \cdot$ Homolytic \checkmark	2	Single headed arrows are vital Dots on radicals not essential
31	(d)	(ii)	$\begin{aligned} & \mathrm{Cl}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{HCl}+\mathrm{C}_{2} \mathrm{H}_{5} \checkmark \\ & \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{Cl} \downarrow \end{aligned}$	2	```ALLOW \(\mathrm{Cl}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{H}\) AND H\(+\mathrm{Cl}_{2} \rightarrow \mathrm{HCl}+\mathrm{Cl}\) for 1 mark DO NOT ALLOW dots on molecules```
31	(d)	(iii)	$\mathrm{Cl}+\mathrm{O}_{3} \rightarrow \mathrm{ClO}+\mathrm{O}_{2}$ AND ClO$+\mathrm{O} \rightarrow \mathrm{Cl}+\mathrm{O}_{2} \checkmark$ (Homogeneous as) catalyst/it and reagent(s)/ozone are in same/gaseous phase/state \checkmark Catalyst is re-generated/reformed/there at beginning and	3	IGNORE dots on radicals IGNORE other equations Third marking point must be related to the idea of the catalyst being recycled.

	/01		Mark Scheme June 2017		
Question			Answer	Marks	Guidance
31	(d)	(iv)	FIRST CHECK ANSWER ON ANSWER LINE If answer $=3.96 \times 10^{-7} \mathrm{~m}$ (2 or more sf) award 2 marks Energy (per bond): $302000 / 6.02 \times 10^{23}=\left(5.017 \times 10^{-19} \mathrm{~J}\right)$ Use of $E=h c / \lambda$ and calculation, $\lambda=3.96 \times 10^{-7} \mathrm{~m} \checkmark$	2	ALLOW any number rounding to $4.0 \times 10^{-7} \mathrm{~m}$ with 2 or more sf (to allow for early rounding) $\lambda=3 \times 10^{8} \times 6.63 \times 10^{-34} \times 6.02 \times 10^{23} / 302000$ ALLOW omission/error of one factor (1000, N_{A}, h or c) for 1 mark. (eg $3.96 \times 10^{-4}, 6.59 \times 10^{-31}, 5.98 \times$ $10^{26}, 1.32 \times 10^{-15}$) ALLOW use of $\mathrm{E}=\mathrm{h} \lambda\left(\right.$ gives $\left.7.57 \times 10^{14}\right)$ for 1 mark
31	(e)		$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{KCl} \rightarrow \mathrm{KHSO}_{4}+\mathrm{HCl} \checkmark$	1	ALLOW H $\mathrm{SO}_{4}+2 \mathrm{KCl} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$ ALLOW elements in any order in KHSO_{4} IGNORE state symbols
31	(f)		$\begin{aligned} & \mathrm{I},-1 \text { and } 0 \checkmark \\ & \mathrm{~S},+6 \text { and }-2 \\ & 8 \mathrm{HI}+\mathrm{H}_{2} \mathrm{SO} 4 \rightarrow 4 \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	3	NOT signs after the numbers. ALLOW ecf on signs after numbers for second point. ALLOW ' $8 \mathrm{H}^{+}+8 \mathrm{I}^{-‘}$ for ' 8 HI ' IGNORE state symbols
			Total	19	

Question		Answer	Marks	Guidance
32	(a)	They are in group 2/ same group/same no of outer electrons/ lose 2 electrons when they react \checkmark	1	
32	(b)	Magnesium (ions)... are smaller/ have a smaller radius/ have higher charge density ORA \checkmark Distort (the charge on) the carbonate (ion)/ polarise the carbonate (ion) more ORA \checkmark	2	NOT magnesium carbonate/magnesium atoms have a higher charge density. Comparison is essential in both parts.
32	(c)	FIRST CHECK ANSWER ON ANSWER LINE If answer = 647 (2 or more sf) award 3 marks Moles CO_{2} absorbed $=1000 / 40.3(=24.81) \checkmark$ Volume CO_{2} absorbed $=$ ans to $1^{\text {st }}$ point $\times 8.31 \times$ 298/95000 (= 0.647) \checkmark Evaluation and conversion to $\mathrm{dm}^{3}(\times 1000)=647 \mathrm{dm}^{3} \checkmark$	3	ALLOW ecf throughout ALLOW 2 or more sf 1. Moles of MgO calculated $=$ moles CO_{2} absorbed 2. Correct substitution into $V=n R T / p$ 3. Evaluation and unit conversion

	33/01	Mark Scheme		June 20
	uestion	Answer	Marks	Guidance
32	(d)*	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Learners are able to explain the origin of colour, electron transitions that cause the lines and the application of the lines to identification of elements. They give most of the points in all 3 sections There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Learners clearly describe points from at least two of the sections or some coverage of all. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Learners describe points from at least one of the sections or two points in total. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	Indicative scientific points may include: AO1.1 Origin of colour: - Colour is related to certain visible frequencies/wavelengths of light. - ($\Delta) \mathrm{E}=\mathrm{h} v$ AO1.1 Electron transitions: - Excitation of electrons by absorbing energy (NOT em radiation) - Release of em radiation as electron drops down energy levels. - energy levels are quantised/discrete AO2.1 Use in identification: - Energy levels and hence gaps are unique to the element. - Comparison of spectrum showed it did not match any elements known at the time. (Comparison with barium alone only partially matches this criterion). ALLOW points made on a labelled diagram.

	H433/01	Mark Scheme					June 20
Questio		Answer				Marks	Guidance
32	(e)	Reagent solution	Ba^{2+}	Pb^{2+}	Fe^{2+}	3	ALLOW 1 mark for each correct row.
		(Dilute) sulfuric acid OR any named soluble sulfate	White ppt	White ppt	Green solution/ no reaction		OR 1 mark for a column of correct observations, as long as 3 reagents used. Cross incorrect boxes and tick remaining columns OR rows to give the higher score.
		Sodium/ potassium hydroxide/ ammonia	Colourless solution/ no reaction	White ppt	(Dirty) green ppt		ALLOW anion name instead of full reagent. ALLOW a dash in a box as 'no reaction', but not an empty box.
		Hydrochloric acid OR any named soluble chloride	Colourless solution/ no reaction	White ppt	Green solution/ no reaction		ALLOW white ppt for Ba^{2+} and NaOH
		Any named soluble iodide	Colourless solution/ no reaction	Yellow ppt	Green solution/ no reaction		ALLOW formulae for names of reagents as long as correct.
					Total	15	

Question		Answer		Marks		
33	(a)			Increasing temp	Inc pressure	$\mathbf{2}$

Question		Answer	Marks	Guidance
(e)	(i)	$6 \times 100 /(16+18)=17.6 / 17.65 / 18 \checkmark$	1	ALLOW 2 or more sf
(e)	(ii)	Co-product \checkmark	1	ALLOW 'waste product' DO NOT ALLOW By-product
(f)		Any 2 from: - Stops the release of/ removes toxic/poisonous/dangerous/polluting CO OR no need to transport/remove CO OR uses up/re-uses CO - (Exothermic) reaction provides heat, saving fuel/ heating steam reforming/endothermic reaction - Higher yield of hydrogen/ more hydrogen/higher atom economy/less waste.	2	Any 2 from: 1. relating to utilisation of CO 2. energy considerations 3. yield of hydrogen/ atom economy/ waste NOT 'no waste'/100\% atom economy as CO_{2} is still a waste product. If more than 2 reasons are given, mark the first 2 .
		Total	14	

Question			Answer	Marks	Guidance
34	(a)	(i)	Bond angles: Both have bond angle of $120^{\circ} \checkmark$ Both structures have three areas of electron density/ 3 groups (or regions or sets) of electrons/ 3 areas of negative charge (repelling) Bond lengths: Structure 1, all bond lengths the same. \checkmark Structure 2, C=C shorter than C-C \checkmark	4	marks for bond angle and explanation. $2^{\text {nd }}$ mark depends on the first 1 mark for bond lengths in each structure.
		(ii)	Structure 2 would be expected to have ΔH of $3 x$ cyclohexene/ (-) $360\left(\mathrm{kJmol}^{-1}\right), \checkmark$ benzene/structure 1 has delocalised (electrons) \checkmark	2	
	(b)	(i)	(Temp) below $55^{\circ} \mathrm{C}$ OR $55^{\circ} \mathrm{C} \checkmark$ $\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+2 \mathrm{HSO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \checkmark$	2	IGNORE any reagents mentioned or conditions other than temperature for the first point ALLOW $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{HSO}_{4}{ }^{-}+\mathrm{H}_{2} \mathrm{O}$ ALLOW HNO $3+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+}+\mathrm{HSO}_{4}{ }^{-}$ then $\mathrm{H}_{2} \mathrm{NO}_{3} \rightarrow \mathrm{NO}_{2}{ }^{+}+\mathrm{H}_{2} \mathrm{O}$
		(ii)	$\mathrm{NaNO}_{2} /$ Sodium nitrate(III)/ sodium nitrite AND HCl \checkmark Temp below $5^{\circ} \mathrm{C} \checkmark$ Alkaline conditions AW	4	ALLOW $\mathrm{HNO}_{2} /$ name ALLOW ice cold ALLOW H drawn on coupling carbon ALLOW third mark if appropriate conditions shown in middle box IGNORE any other reagents in bottom box unless CON
	(c)		(Sodium) Sulfonate	1	IGNORE any oxidation state given

H433/01	Mark Scheme June 2017		
Questi	Answer	Marks	Guidance
(d)	$\checkmark \checkmark \checkmark 1$ for each arrow	3	ALLOW arrows that, if continued in the same direction, would start and finish in the correct places, (anywhere on appropriate atom or bond). ALLOW arrow from H into the ring AND an arrow from the ring to the right-hand N as alternative for arrow 2
(g) (e)	FIRST CHECK ANSWER ON ANSWER LINE If answer $=0.8(0)$ award 2 marks $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-3.7} \text { evaluated }=2.0 \times 10^{-4} \checkmark} \\ & \mathrm{~K}_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]=[\mathrm{In}-] /[\mathrm{HIn}] \text { evaluated }=0.80 \end{aligned}$	2	Must have ' $\mathrm{H}^{+}=$' to score the first point ALLOW 1: 1.25, 4: 5 etc NOT 1: 0.8
	Total	18	

Question		Answer		Guidance	
35	(a) *	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Gives a clear account with at least 1 fine detail point in all 3 sections. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Gives a point from each of the 3 sections. OR Gives an account of 2 areas, both including a fine detail point. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Makes at least 2 relevant points. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	Indicative scientific points might include: AO3.2 Make judgements - Interpret practical procedure 1 Use of ppt - Weigh ppt Fine detail: - Filter to collect ppt - Rinse ppt with distilled/deionised water - Dry precipitate. This may be in the remedies for inaccuracy 2 Use of mass of ppt to find x - Find moles of MgCO_{3} Fine detail: - Appreciation that mass ppt related to moles MgSO_{4} - Subtract mass of MgSO_{4} from original mass of crystals to find mass of water - calculate no. moles water and find the ratio. 3 AO3.4 Develop and refine At least one point from: Inaccuracy Remedy (fine detail)	
				Not enough sodium carbonate added to precipitate all the magnesium ions or not all MgSO_{4} dissolved	Add excess sodium carbonate Add more water
				Mass of ppt inaccurate due to water	dry ppt IGNORE means of drying
				Losses of substances when filtering/pouring etc	Rinse all containers with distilled water and add to the filter.

H433/01	Mark Scheme June 20		
Question	Answer	Marks	Guidance
(b)	FIRST CHECK ANSWER ON ANSWER LINE If answer $=-99.9$ or -100 award 4 marks (+) 99.9 or -68.1 scores 3 (1 of the last 2) 1. Use of $Q=m c \Delta T$: $50 \times 3.0 \times 4.18(=627 \mathrm{~J} \text { or } 0.627 \mathrm{~kJ}) \checkmark$ 2. moles $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}=9.7 / 246.4=0.0394$ AND Scale up for 1 mole: $\Delta H=0.627 / 0.0394$ $=(+) 15.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$ $3 . \Delta \mathrm{H}=(-84.0-(+15.9)) \checkmark$ OR Cycle (or enthalpy level diagram) labelled with species $\sqrt{ }$ 4. Evaluated with sign $=-99.9 \mathrm{~kJ} \mathrm{~mol}^{-1} \checkmark$		ALLOW ecf throughout. IGNORE sign for first point. A common mistake is to take the mass as 59.7. NOT -15.9 as temp of water falls. IGNORE (7) $\mathrm{H}_{2} \mathrm{O}$ in bottom box.
(c)	$\begin{aligned} & \text { Top box: } \mathrm{Mg}^{2+}(\mathrm{g}) \text { AND } \mathrm{SO}_{4}{ }^{2-}(\mathrm{g}) \checkmark \\ & \Delta_{\mathrm{LE}} H(=-1922-1099+84)=-2937 \end{aligned}$	2	
(d)	Strontium (ions) are larger/have a lower charge density so forces between water and strontium/ion-dipole forces less strong OR fewer water molecules surround it OR Not enough energy released in making ion-dipole bonds OR $\Delta_{\text {hyd }} H$ is less exothermic/releases less energy \checkmark	2	1 Charge density/radius. 2 Correct statement on the interactions between strontium ions and water. IGNORE smaller/larger in relation to $\Delta_{\text {hyd }} \mathrm{H}$. ORA throughout
	Total	14	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
GROUP
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

