

GCE AS and A Level

Chemistry

AS exams 2009 onwards A2 exams 2010 onwards

Unit 1: Specimen question paper

Version 1.1

Surname			Oth	er Names			
Centre Number				Candidate	Number		
Candidate Sig							

Leave blank

General Certificate of Education 2009 Advanced Subsidiary Examination

CHEMISTRY Unit 1 Foundation Chemistry

CHEM1

SPECIMEN PAPER

For this paper you must have

- A calculator
- Data Sheet / Periodic Table

Time allowed: 11/4 hours

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.

Information

- The maximum mark for this paper is 70.
- The marks for the questions are shown in brackets.
- You are reminded of the need for good English and clear presentation in your answers.

	For Exam	iner's l	Jse	
Number	umber Mark Number		ber	Mark
1		4		
2		5		
3				
Total (Column	Total (Column 1)			
Total (Column				
TOTAL				
Examiner's Initials				

SECTION A

Answer all questions in the spaces provided

(a)	Define the term atomic number	er.			
					(1 mar
(b)	Explain why atoms of an elem	ent may have d	ifferent mass	numbers.	
					(1 mar
(c)	The table below refers to a sar	mple of krypton.			
	Relative <i>m/z</i>	82	83	84	86
	Relative abundance / %	12	12	50	26
	(i) Name an instrument wh	ich is used to mo	easure the rel	ative abundand	ee of isotopes
	(i) Name an instrument who		easure the rel	ative abundand	ce of isotopes
		atomic mass.			ee of isotopes.
	(ii) Define the term <i>relative</i>	atomic mass.			ee of isotopes.
	(ii) Define the term <i>relative</i>	atomic mass.			
(d)	(ii) Define the term <i>relative</i>	atomic mass.	is sample of k	rypton.	(5 mark.

(e)		263, krypton was found to react with fluorine. State why this discovery was pected.
		(1 mark)
(f)		a suitable model of atomic structure to explain the following experimental rvations.
	(i)	The first ionisation energy of krypton is greater than that of bromine.
	(ii)	The first ionisation energy of aluminium is less than the first ionisation energy of magnesium.
		(4 marks)

Turn over for the next question

13

2	(a)		omethane, CH ₃ NO ₂ , is used as an 'energy rich' fuel for motor-racing. It burns in gen forming three gases.
			$2CH_3NO_2(1) + 1\frac{1}{2}O_2(g) \rightarrow 2CO_2(g) + 3H_2O(g) + N_2(g)$
		(i)	A 1.00 mol sample of nitromethane was burned in oxygen forming the products shown in the equation above. Calculate the total volume of gases produced at 298 K and 100 kPa (assume that the water is gaseous).
		(ii)	This combustion reaction is very exothermic and reaches a temperature of 1000 K. Determine the total volume of gases when the temperature is raised to 1000 K at a constant pressure.
			(If you have been unable to determine a volume in your answer to part (a)(i), you may assume it to be 8.61×10^{-4} m ³ but this is not the correct answer).
			(5 marks)
	(b)	diox	s been suggested that, instead of releasing it into the atmosphere, the carbon ide gas evolved during a combustion reaction can be absorbed by sodium hydroxide tion, as shown by the following equation.
			$2NaOH(aq) + CO2(g) \rightarrow Na2CO3(aq) + H2O(l)$
		(i)	Give two reasons why this reaction might not be suitable for the removal of carbon dioxide from the exhaust gases of an engine.
			Reason 1
			Reason 2

	(ii)	The sodium hydroxide solution for this reaction can be made on an indus scale, together with chlorine gas and hydrogen gas, by electrolysis of a d solution of sodium chloride. Suggest one commercial advantage and one environmental disadvantage of this industrial process.	lilute
		Commercial advantage	
		Environmental disadvantage	
			(4 marks)
(c)		ogen forms several different oxides. Calculate the empirical formula of an ogen which contains 26% of nitrogen by mass.	oxide of
			(3 marks)
(d)		other oxide of nitrogen, N_2O , decomposes on warming to produce nitrogen gen. Write an equation for the decomposition reaction.	and
			(1 mark)
(e)		rnal combustion engines burn fuels in air. Suggest one advantage of using a N_2O for this purpose.	air mixed
			(1 mark)

Turn over for the next question

14

There are no questions printed on this page

3	The	elements phosphorus, sulfur, chlorine and argon are in the p block of the Periodic Table.				
	(a)	State why these elements are classified as p block elements.				
		(1 mark)				
	(b)	State the trend in atomic radius from phosphorus to chlorine and explain the trend.				
		Trend				
		Explanation				
		(3 marks)				
	(c)	In terms of structure and bonding, explain why sulfur has a higher melting point than phosphorus.				
		(3 marks)				
	(d)	In terms of atomic structure, explain why the van der Waals' forces in liquid argon are very weak.				
		(2 marks)				

4	(a)	used	ane (C_6H_{14}) is a hydrocarbon which is a component of LPG (liquid petroleum gas), as a fuel for heating. When burning fuels in boilers it is important to ensure plete combustion.	,
		(i)	Give two reasons why boilers are designed to ensure complete combustion.	
			Reason 1	
			Reason 2	
		(ii)	Write an equation for the incomplete combustion of hexane.	••
		(iii)	Suggest how an engineer or a chemist could demonstrate that the combustion of hexane in a faulty boiler was incomplete.	••
			(5 mark.	 s)
	(b)		iched chain alkanes are often preferred as fuels. Draw the structure of two branches isomers of hexane and name the first isomer.	d
			Isomer 1 Isomer 2	
		Nam	e of isomer 1(3 mark.	 s)

(c)		ane can be cracked in the presence of a catalyst to produce another hydrocarbon, Z, methane.
	(i)	Draw a possible structure for Z.
	(ii)	Give a suitable catalyst for this reaction.
	(iii)	Suggest why the product Z has more commercial value than hexane.
		(3 marks)
(d)		overall equation for the production of dichloromethane from methane and chlorine own below.
		$CH_4 + 2Cl_2 \rightarrow CH_2Cl_2 + 2HCl$
	(i)	Calculate the % atom economy for the formation of CH ₂ Cl ₂ in this reaction.
	(ii)	Give one reason why this atom economy of less than 100% is an important consideration for the commercial success of this process and predict how a chemical company would maximise profits from this process.

Turn over for the next question

SECTION B

Answer Question 5 in the space provided on pages 10 to 12

5	(a)	Describe the bonding in, and the structure of, sodium chloride and ice. In each case draw a diagram showing how each structure can be represented. Explain, by reference to the types of bonding present, why the melting point of these two compounds is very different.
		(12 marks)
	(b)	Explain how the concept of bonding and non-bonding electron pairs can be used to predict the shape of, and bond angles in, a molecule of sulfur tetrafluoride, SF ₄ . Illustrate your answer with a diagram of the structure. (8 marks)
		END OF QUESTIONS

