

Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE Mathematics Core Mathematics C4 (6666)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 6666_01_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- dM1 denotes a method mark which is dependent upon the award of the previous method mark.
- aef "any equivalent form"
- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number		Scheme	Notes	Marks		
1. (a)	√(4 -	$\overline{9x}$ = $(4 - 9x)^{\frac{1}{2}} = \underline{(4)^{\frac{1}{2}}} \left(1 - \frac{9x}{4}\right)^{\frac{1}{2}} = \underline{2} \left(1 - \frac{9x}{4}\right)^{\frac{1}{2}}$	$\frac{1}{2} \qquad \qquad \underline{(4)^{\frac{1}{2}}} \text{ or } \underline{2}$	<u>B1</u>		
	= {2}	$\left[1 + \left(\frac{1}{2}\right)(kx) + \frac{\left(\frac{1}{2}\right)(-\frac{1}{2})}{2!}(kx)^{2} + \dots\right]$	see notes	M1 A1ft		
	= {2}	$\left[1 + \left(\frac{1}{2}\right)\left(-\frac{9x}{4}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(-\frac{9x}{4}\right)^{2} + \dots\right]$				
	_	$-\frac{9}{8}x - \frac{81}{128}x^2 + \dots$	see notes			
	= 2 -	$\frac{9}{4}x$; - $\frac{81}{64}x^2$ +	isw	A1; A1		
				[5]		
(b)	√310	$= 10\sqrt{3.1} = 10\sqrt{(4 - 9(0.1))}, \text{ so } x = 0.1$	E.g. For $10\sqrt{3.1}$ (can be implied by later working) and $x = 0.1$ (or uses $x = 0.1$) Note: $\sqrt{(100)(3.1)}$ by itself is B0	B1		
			110tc. \(\frac{1}{100}\)(3.1) by itself is b 0			
	When	$x = 0.1 \sqrt{(4-9x)} \approx 2 - \frac{9}{4}(0.1) - \frac{81}{64}(0.1)^2 + \dots$	Substitutes their x , where $ x < \frac{4}{9}$ into all three terms of their binomial expansion	M1		
		= 2 - 0.225 - 0.01265625 = 1.76234375				
	G - /		17.623 cao	A 1		
		$310 \approx 17.6234375 = \underline{17.623} \text{ (3 dp)}$		A1 cao [3]		
	Note	: the calculator value of $\sqrt{310}$ is 17.60681686	which is 17.607 to 3 decimal places	8 marks		
		Question	1 Notes	o marks		
1. (a)	B1	$(4)^{\frac{1}{2}}$ or $\underline{2}$ outside brackets or $\underline{2}$ as candidate's		n		
	M1	Expands $\left(+kx\right)^{\frac{1}{2}}$ to give any 2 terms out of	3 terms simplified or un-simplified,			
		E.g. $1 + \left(\frac{1}{2}\right)(kx)$ or $\left(\frac{1}{2}\right)(kx) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(kx)^2$	or $1 + + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(kx)^2$			
		where k is a numerical value and where $k \neq 1$				
	A1ft	A correct simplified or un-simplified $1 + \left(\frac{1}{2}\right)$	$(kx) + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(kx)^2$ expansion with consist	tent (kx)		
	Note	(kx) , $k \ne 1$ must be consistent (on the RHS, no	ot necessarily on the LHS) in their expansi	ion		
	Note	Award B1M1A0 for $2\left[1+\left(\frac{1}{2}\right)\left(-9x\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(-\frac{9x}{4}\right)^2+\dots\right]$ because (kx) is not consistent				
	Note	Incorrect bracketing: $2\left[1+\left(\frac{1}{2}\right)\left(-\frac{9x}{4}\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(-\frac{9x^2}{4}\right)+\dots\right]$ is B1M1A0 unless recovered				
	A1	$2 - \frac{9}{4}x$ (simplified fractions) or allow $2 - 2$	<u> </u>			
	A1	Accept only $-\frac{81}{64}x^2$ or $-1\frac{17}{64}x^2$ or -1.265	$525x^2$			

				Qu	estion 1 Note	es Continue	ed		
1. (a) ctd.	SC	If a candidate	would	otherwise sc	ore 2 nd A0, 3 ⁿ	d A0 (i.e. so	ores A0A0 in th	ne final two	marks to (a))
eta.		then allow Sp							
		SC: $2\left[1-\frac{9}{8}\right]$	x; or	SC: $2[1+.$	$ \frac{81}{128}x^2 +$.] or SC :	$\lambda \left[1 - \frac{9}{8}x - \frac{81}{128} \right]$	$x^2 + \dots$	
		or SC: $\left[\lambda - \frac{1}{2}\right]$	$\frac{9\lambda}{8}x - \frac{8}{1}$	$\frac{31\lambda}{28}x^2 + \dots \bigg] ($	where λ can	be 1 or om	tted), where eac	th term in th	e []
		is a simplified	d fractio	n or a decima	al,				
		OR SC: for	$2 - \frac{18}{8}x$	$c - \frac{162}{128}x^2 + .$	(i.e. for not	simplifyin	g their correct co	pefficients)	
	Note	Candidates w	ho write	$\geq 2\left[1+\left(\frac{1}{2}\right)\right]$	$\left(\frac{9x}{4}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}$	$\frac{1}{2}$) $\left(\frac{9x}{4}\right)^2$ +	$]$, where $k =$	$=\frac{9}{4}$ and not	$-\frac{9}{4}$
		and achieve		0-7		M1A1A0A	1		
	Note	Ignore extra							
	Note	You can igno				2	7		
	Note	Allow B1M1	A1 for	$2\left[1+\left(\frac{1}{2}\right)\right]$	$-\frac{9x}{4} + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}$	$\frac{1}{2}\left(\frac{9x}{4}\right) + .$]		
	Note	Allow B1M1	A1A1A	1 for $2\left[1+\left(\frac{1}{2}\right)\right]$	$\left(\frac{1}{2}\right)\left(-\frac{9x}{4}\right) + \frac{9x}{4}$	$\frac{(\frac{1}{2})(-\frac{1}{2})}{2!} \left(\frac{9x}{4}\right)$	$\left[\frac{1}{2} \right]^2 + \dots = 2 - \frac{2}{4}$	$\frac{9}{4}x - \frac{81}{64}x^2$	+
(b)	Note	Give B1 M1	for $\sqrt{31}$	$\overline{0} \approx 10 \bigg(2 - \bigg)$	$\frac{9}{4}(0.1) - \frac{81}{64}$	$(0.1)^2\bigg)$			
	Note	Other altern	ative su	itable value	$\frac{s \text{ for } x \text{ for } \sqrt{s}}{2}$	$\sqrt{310} \approx \beta \sqrt{2}$	4-9(their x)		
			b	x	Estimate		Ь	x	Estimate
			7	- 38 147	17.479		14	$\frac{79}{294}$	18.256
			8	$-\frac{3}{32}$	17.599		15	118 405	18.555
			9	$\frac{14}{729}$	17.607		16	119 384	18.899
			10	$\frac{1}{10}$	17.623		17	$\frac{94}{289}$	19.283
			11	58 363	17.690		18	$\frac{493}{1458}$	19.701
			12	$\frac{133}{648}$	17.819		19	$\frac{126}{361}$	20.150
		122							20.625
	Note	Apply the sch	neme in	the same way	y for their β	and their x			
		E.g. Give B1	E.g. Give B1 M1 A1 for $\sqrt{310} \approx 12 \left(2 - \frac{9}{4} \left(\frac{133}{648} \right) - \frac{81}{64} \left(\frac{133}{648} \right)^2 \right) = 17.819 (3 dp)$						
	Note	Allow B1 M	1 A1 for	$\sqrt{310} \approx 10$	$00\left(2-\frac{9}{4}\right)(0.4)$	$41) - \frac{81}{64}(0)$	$(0.441)^2 = 76.1$	61 (3 dp)	
	Note	Give B1 M1	A0 for	$\sqrt{310} \approx 10$	$2 - \frac{9}{4}(0.1) -$	$\frac{81}{64}(0.1)^2$	$-\frac{729}{512}(0.1)^3$ =	17.609 (3 dp))

		Question 1 Notes Continued					
1. (b)	Note	Send to review using $\beta = \sqrt{155}$ and $x = \frac{2}{9}$ (which gives	s 17.897 (3 dp))				
	Note	Send to review using $\beta = \sqrt{1000}$ and $x = 0.41$ (which g	rives 27.346 (3 dp))				
1. (a)	Alterna	tive method 1: Candidates can apply an alternative form	of the binomial expansion				
Alt 1	$\left\{ (4-9)\right\}$	$ 9x)^{\frac{1}{2}} = (4)^{\frac{1}{2}} + (\frac{1}{2})(4)^{-\frac{1}{2}}(-9x) + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(4)^{-\frac{3}{2}}(-9x)^{2} $					
	B1	$(4)^{\frac{1}{2}}$ or 2					
	M1	Any two of three (un-simplified) terms correct					
	A1	All three (un-simplified) terms correct					
	A1	$2 - \frac{9}{4}x$ (simplified fractions) or allow $2 - 2.25x$ or	$2 - \frac{9}{4}x$ (simplified fractions) or allow $2 - 2.25x$ or $2 - 2\frac{1}{4}x$				
	A1	Accept only $-\frac{81}{64}x^2$ or $-1\frac{17}{64}x^2$ or $-1.265625x^2$					
	Note	The terms in C need to be evaluated.					
		So $\frac{1}{2}C_0(4)^{\frac{1}{2}} + \frac{1}{2}C_1(4)^{-\frac{1}{2}}(-9x); + \frac{1}{2}C_2(4)^{-\frac{3}{2}}(-9x)^2$ without further working is B0M0A0					
1. (a)	Alterna	tive Method 2: Maclaurin Expansion $f(x) = (4-9x)^{\frac{1}{2}}$					
	f''(x) = -	$-\frac{81}{4}(4-9x)^{-\frac{3}{2}}$	Correct $f\mathfrak{C}(x)$	B1			
	$+a(1 - 0x)^{-\frac{1}{2}} \cdot a \neq +1 - M1$						
	$f'(x) = \frac{1}{2}(4 - 9x)^{-\frac{1}{2}}(-9)$ $\frac{1}{2}(4 - 9x)^{-\frac{1}{2}}(-9) \text{A1 oe}$						
	$\left\{ :: f(0) = 2, f'(0) = -\frac{9}{4} \text{ and } f''(0) = -\frac{81}{32} \right\}$						
	So, $f(x)$	$x = 2 - \frac{9}{4}x; - \frac{81}{64}x^2 + \dots$		A1; A1			

Question Number	Scheme			Notes	Marks
2.	$x^2 + xy + y^2 - 4x - 5y + 1 = 0$				
(a)	$\left\{ \underbrace{\frac{dy}{dx}} \times \right\} \underline{2x} + \left(\underline{\underline{y} + x} \frac{dy}{dx} \right) + 2y \frac{dy}{dx} - 4 - 5 \frac{dy}{dx} = \underline{0}$				M1 <u>A1</u> <u>B1</u>
	$2x + y - 4 + (x + 2y - 5)\frac{dy}{dx} = 0$				dM1
	$\frac{dy}{dx} = \frac{2x + y - 4}{5 - x - 2y} \text{ or } \frac{4 - 2x - y}{x + 2y - 5}$			o.e.	A1 cso
					[5]
(b)	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow \right\} 2x + y - 4 = 0$			M1	
	$\{y=4-2x \implies\} x^2 + x(4-2x) + (4-2x)^2 - 4x - 5(4-2x)$	(x) + 1 = 0			dM1
	$x^2 + 4x - 2x^2 + 16 - 16x + 4x^2 - 4x - 20 + 10x + 1$	= 0			
	gives $3x^2 - 6x - 3 = 0$ or $3x^2 - 6x = 3$ or $x^2 - 2x - 1 =$	0	Correc	t 3TQ in terms of x	A1
	$(x-1)^2 - 1 - 1 = 0$ and $x =$			Method mark for solving a 3TQ in <i>x</i>	ddM1
	$x = 1 + \sqrt{2}, \ 1 - \sqrt{2}$		x = 1	$+\sqrt{2}$, $1-\sqrt{2}$ only	A1
			1		[5]
(b) Alt 1	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Longrightarrow \right\} 2x + y - 4 = 0$				M1
	$\left\{x = \frac{4 - y}{2} \Rightarrow \right\} \left(\frac{4 - y}{2}\right)^2 + \left(\frac{4 - y}{2}\right)y + y^2 - 4\left(\frac{4 - y}{2}\right)y + y^2 $	$\left(\frac{y}{y}\right) - 5y + 1 =$	= 0		dM1
	$\left(\frac{16-8y+y^2}{2}\right) + \left(\frac{4y-y^2}{2}\right) + y^2 - 2(4-y) - 5y$	y + 1 = 0			
	gives $3y^2 - 12y - 12 = 0$ or $3y^2 - 12y = 12$ or $y^2 - 4y$	- 4 = 0	Correc	t 3TQ in terms of y	A1
	$(y-2)^2 - 4 - 4 = 0$ and $y =$			Salvas a 2TO in u	
	$x = \frac{4 - (2 + 2\sqrt{2})}{2}$, $x = \frac{4 - (2 - 2\sqrt{2})}{2}$	and fi	nds at lea	Solves a 3TQ in y ast one value for x	ddM1
	$x = 1 + \sqrt{2}, \ 1 - \sqrt{2}$		x = 1	$+\sqrt{2}$, $1-\sqrt{2}$ only	A1
					[5]
					10
(a) Alt 1	$\left\{\frac{2x}{2x}\right\} \times \left\{2x\frac{dx}{dy} + \left(y\frac{dx}{dy} + x\right) + 2y - 4\frac{dx}{dy} - 5 = 0\right\}$				M1 <u>A1</u> <u>B1</u>
	$x + 2y - 5 + (2x + y - 4)\frac{dx}{dy} = 0$				dM1
	$\frac{dy}{dx} = \frac{2x + y - 4}{5 - x - 2y} \text{ or } \frac{4 - 2x - y}{x + 2y - 5}$			o.e.	A1 cso
					[5]

		Question 2 Notes
2. (a)	M1	Differentiates implicitly to include either $x \frac{dy}{dx}$ or $y^2 \to 2y \frac{dy}{dx}$ or $-5y \to -5 \frac{dy}{dx}$.
		$\left(\text{Ignore } \frac{\mathrm{d}y}{\mathrm{d}x} = \dots \right)$
	A1	$x^2 \to 2x$ and $y^2 - 4x - 5y + 1 = 0 \to 2y \frac{dy}{dx} - 4 - 5 \frac{dy}{dx} = 0$
	B1	$xy \to y + x \frac{\mathrm{d}y}{\mathrm{d}x}$
	Note	If an extra term appears then award 1st A0
	Note	$2x + y + x\frac{dy}{dx} + 2y\frac{dy}{dx} - 4 - 5\frac{dy}{dx} \rightarrow 2x + y - 4 = -x\frac{dy}{dx} - 2y\frac{dy}{dx} + 5\frac{dy}{dx}$ will get 1st A1 (implied) as the "=0" can be implied the rearrangement of their equation.
	dM1	dependent on the previous M mark
		An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are at least two terms in $\frac{dy}{dx}$.
	A1	$\frac{2x+y-4}{5-x-2y}$ or $\frac{4-2x-y}{x+2y-5}$
	cso	If the candidate's solution is not completely correct, then do not give the final A mark
(b)	M1	Sets the numerator of their $\frac{dy}{dx}$ equal to zero (or the denominator of their $\frac{dx}{dy}$ equal to zero) o.e.
	Note	This mark can also be gained by setting $\frac{dy}{dx}$ equal to zero in their differentiated equation from (a)
	Note	If the numerator involves one variable only then <i>only</i> the 1 st M1 mark is possible in part (b).
	dM1	dependent on the previous M mark Substitutes their <i>x</i> or their <i>y</i> (from their numerator = 0) into the printed equation to give an equation in one variable only
	A1	For obtaining the correct 3TQ. E.g.: either $3x^2 - 6x - 3 = 0$ or $-3x^2 + 6x + 3 = 0$
	Note	This mark can also be awarded for a correct 3 term equation. E.g. either $3x^2 - 6x = 3$
		$x^2 - 2x - 1 = 0$ or $x^2 = 2x + 1$ are all fine for A1
	ddM1	dependent on the previous 2 M marks See page 6: Method mark for solving THEIR 3-term quadratic in one variable
		Quadratic Equation to solve: $3x^2 - 6x - 3 = 0$
		Way 1: $x = \frac{6 \pm \sqrt{(-6)^2 - 4(3)(-3)}}{2(3)}$
		Way 2: $x^2 - 2x - 1 = 0 \Rightarrow (x - 1)^2 - 1 - 1 = 0 \Rightarrow x =$
		Way 3: Or writes down at least one exact correct x-root (or one correct x-root to 2 dp) from
		their quadratic equation. This is usually found on their calculator. Way 4: (Only allowed if their 3TQ can be factorised)
		• $(x^2 + bx + c) = (x + p)(x + q)$, where $ pq = c $, leading to $x =$
		• $(ax^2 + bx + c) = (mx + p)(nx + q)$, where $ pq = c $ and $ mn = a$, leading to $x =$
	Note	If a candidate applies <i>the alternative method</i> then they also need to use their $x = \frac{4-y}{2}$
	A of	to find at least one value for x in order to gain the final M mark.
	A1	Exact values of $x = 1 + \sqrt{2}$, $1 - \sqrt{2}$ (or $1 \pm \sqrt{2}$), cao Apply isw if y-values are also found.
	Note	It is possible for a candidate who does not achieve full marks in part (a), (but has a correct numerator for $\frac{dy}{dx}$) to gain all 5 marks in part (b)
	11016	

		Question 2 Notes						
2. (a) Alt 1	M1	Differentiates implicitly to include either $y \frac{dx}{dy}$ or $x^2 \to 2x \frac{dx}{dy}$ or $-4x \to -4 \frac{dx}{dy}$. [Ignore $\frac{dx}{dy} =$]						
	A1	$x^2 \to 2x \frac{dx}{dy}$ and $y^2 - 4x - 5y + 1 = 0 \to 2y - 4 \frac{dx}{dy} - 5 = 0$						
	B1	$xy \to y \frac{\mathrm{d}x}{\mathrm{d}y} + x$						
	Note	If an extra term appears then award 1 st A0						
	Note	$2x\frac{dx}{dy} + y\frac{dx}{dy} + x + 2y - 4\frac{dx}{dy} - 5 \rightarrow x + 2y - 5 = -2x\frac{dx}{dy} - y\frac{dx}{dy} + 4\frac{dx}{dy}$						
		will get 1^{st} A1 (implied) as the "=0" can be implied the rearrangement of their equation.						
	dM1	dependent on the previous M mark						
		An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$						
	A1	$\frac{dy}{dx} = \frac{2x+y-4}{5-x-2y}$ or $\frac{dy}{dx} = \frac{4-2x-y}{x+2y-5}$						
	cso	If the candidate's solution is not completely correct, then do not give the final A mark						
(a)	Note	Writing down from no working						
		• $\frac{dy}{dx} = \frac{2x + y - 4}{5 - x - 2y}$ or $\frac{dy}{dx} = \frac{4 - 2x - y}{x + 2y - 5}$ scores M1 A1 B1 M1 A1						
		• $\frac{dy}{dx} = \frac{4 - 2x - y}{5 - x - 2y}$ or $\frac{dy}{dx} = \frac{2x + y - 4}{x + 2y - 5}$ scores M1 A0 B1 M1 A0						
	Note	Writing $2xdx + ydx + xdy + 2ydy - 4dx - 5dy = 0$ scores M1 A1 B1						

Question Number	Scheme			Notes	Marks
3. (i)	$\frac{13-4x}{(2x+1)^2(x+3)} \equiv \frac{A}{(2x+1)} + \frac{B}{(2x+1)^2} + \frac{C}{(x+3)}$				
(-)	P - 6 C - 1			At least one of $B = 6$ or $C = 1$	B1
(a)	B=6, C=1			Both $B=6$ and $C=1$	B1
	$13-4x = A(2x+1)(x+3) + B(x+3) + C(2x+3)$ $x = -3 \Rightarrow 25 = 25C \Rightarrow C = 1$ $x = -\frac{1}{2} \Rightarrow 132 = \frac{5}{2}B \Rightarrow 15 = 2.5B \Rightarrow B = 2.5B$			Writes down a correct identity and attempts to find the value of either one of <i>A</i> or <i>B</i> or <i>C</i>	M1
	Either $x^2: 0 = 2A + 4C$, constant: 13 = 3A				_
	$x: -4 = 7A + B + 4C$ or $x = 0 \Rightarrow 13 = 3A$ leading to $A = -2$	A + 3B	+ <i>C</i>	Using a correct identity to find $A = -2$	A1
					[4]
(b)	$\int \frac{13-4x}{(2x+1)^2(x+3)} \mathrm{d}x = \int \frac{-2}{(2x+1)} + \frac{6}{(2x+1)^2}$	$+\frac{1}{(x+$	$\frac{1}{3}$ dx		
	$= \frac{(-2)}{2}\ln(2x+1) + \frac{6(2x+1)^{-1}}{(-1)(2)} + \ln(x+3) \left\{ + \frac{(-1)(2)}{(-1)(2)} + ($	a)		See notes	M1
	$ -\frac{1}{2} \ln(2x+1) + \frac{1}{(-1)(2)} + \ln(x+3) $ {+	<i>C</i> }		least two terms correctly integrated	A1ft
	o.e. $\left\{ = -\ln(2x+1) - 3(2x+1)^{-1} + \ln(x+3) \left\{ + c \right\} \right\}$			rrect answer, o.e. Simplified or unlified. The correct answer must be stated on one line Ignore the absence of $+c$	A1
				<u> </u>	[3]
(ii)	$\left\{ (e^x + 1)^3 = \right\} e^{3x} + 3e^{2x} + 3e^x + 1$	e^{3x} +	$3e^{2x}$ +	$3e^x + 1$, simplified or un-simplified	B1
				At least 3 examples (see notes) of correct ft integration	M1
	$\left\{ \int (e^x + 1)^3 dx \right\} = \frac{1}{3}e^{3x} + \frac{3}{2}e^{2x} + 3e^x + x + \{ + c \}$		implifi	$\frac{1}{3}e^{3x} + \frac{3}{2}e^{2x} + 3e^{x} + x,$ sed or un-simplified with or without $+c$	A1
					[3]
(iii)	$\int \frac{1}{4x + 5x^{\frac{1}{3}}} \mathrm{d}x, \ x > 0; \ u^3 = x$				
	$3u^2\frac{\mathrm{d}u}{\mathrm{d}x}=1$			$\frac{du}{dx} = 1 \text{ or } \frac{dx}{du} = 3u^2 \text{ or } \frac{du}{dx} = \frac{1}{3}x^{-\frac{2}{3}}$ or $3u^2du = dx \text{ o.e.}$	B1
	$= \int \frac{1}{4u^3 + 5u} \cdot 3u^2 du \left\{ = \int \frac{3u}{4u^2 + 5} du \right\}$	Do		ession of the form $\int \frac{\pm ku^2}{4u^3 \pm 5u} \{ du \},$ $k \neq 0$ have to include integral sign or du Can be implied by later working	M1
	$= \frac{3}{8}\ln(4u^2 + 5) \{+c\}$			ependent on the previous M mark $\lambda \ln(4u^2 + 5)$; λ is a constant; $\lambda \neq 0$	dM1
	$= \frac{3}{8} \ln \left(4x^{\frac{2}{3}} + 5 \right) \{ + c \}$		Corr	ect answer in x with or without + c	A1
					[4]
					14

	Question 3 Notes					
3. (iii)	Alterna	tive method 1 for part (iii)				
Alt 1			Attempts to multiply numerator and	M1		
			denominator by $x^{-\frac{1}{3}}$	M1		
	$\left\{ \int \frac{1}{4x+1} dx + \frac{1}{4x+1} dx \right\}$	$\left. \frac{1}{5x^{\frac{1}{3}}} \mathrm{d}x \right\} = \int \frac{x^{-\frac{1}{3}}}{4x^{\frac{2}{3}} + 5} \mathrm{d}x$	Expression of the form $\int \frac{\pm kx^{-\frac{1}{3}}}{4x^{\frac{2}{3}} \pm 5} dx, \ k \neq 0$ M1			
			Does not have to include integral sign or du Can be implied by later working			
	3,	$\left(\frac{2}{3}, 5\right)$	$\pm \lambda \ln(4x^{\frac{2}{3}} + 5)$; λ is a constant; $\lambda \neq 0$	dM1		
	=-m	$4x^{\frac{2}{3}} + 5$ $\{+c\}$	Correct answer in x with or without + c	A1		
		,		[4]		
3. (i) (a)	M1	Writes down <i>a correct identity</i> (althoug	th this can be implied) and attempts to find the			
		at least one of either A or B or C. This can be achieved by either substituting values into the				
		identity <i>or</i> comparing coefficients.				
	Note	The correct partial fraction from no wor	rking scores B1B1M1A1			
(i) (b)	M1	,	$\ln(2x+1) \text{ or } \pm D \ln(x+\frac{1}{2}) \text{ or } \pm \frac{Q}{(2x+1)^2} \to \pm B$	$E(2x+1)^{-1}$		
		or				
		$\pm \frac{R}{(x+3)} \to \pm F \ln(x+3)$ for their cons				
	A1ft	At least two terms from any of $\pm \frac{P}{(2x + \frac{P}{2})^2}$	$\frac{Q}{(2x+1)^2}$ or $\pm \frac{R}{(x+3)}$ correctly integrated integral $\pm \frac{R}{(x+3)}$	rated.		
	Note	Can be un-simplified for the A1ft mark				
	A1	-	$\frac{(2x+1)^{-1}}{(-1)(2)} + \ln(x+3) \left\{+c\right\} $ simplified or un-simple	olified.		
		with or without $+c$.				
	Note	Allow final A1 for equivalent answers,	for equivalent answers, e.g. $\ln\left(\frac{x+3}{2x+1}\right) - \frac{3}{2x+1} \{+c\}$ or			
	14016	$ \ln\left(\frac{2x+6}{2x+1}\right) - \frac{3}{2x+1} \left\{+c\right\} $				
	Note	Beware that $\int \frac{-2}{(2x+1)} dx = \int \frac{-1}{(x+\frac{1}{2})}$	$dx = -\ln(x + \frac{1}{2}) \{+c\}$ is correct integration			
	Note	E.g. Allow M1 A1ft A1 for a correct un	n-simplified $\ln(x+3) - \ln(x+\frac{1}{2}) - \frac{3}{2}(x+\frac{1}{2})^{-1} \{ + \frac{1}{2} + \frac{3}{2} + \frac{1}{2} +$	c}		
	Note		ut do not allow poor bracketing for the final A1			
		E.g. Give final A0 for $-\ln 2x + 1 - 3(2x)$	1 6			
(ii)	Note	Give B1 for an un-simplified $e^{3x} + 2e^{2x}$				
(11)	11010					
	M1		$\frac{b}{2}e^{2x} \to \frac{b}{2}e^{2x} \text{ or } de^{x} \to de^{x} \text{ or } \mu \to \mu x; \alpha, \beta, \delta$	$f, \mu \neq 0$		
	Note		$\frac{x}{2} + \frac{1}{2}e^{2x} + 2e^x + e^x + x$, with or without $+c$			
(iii)	Note	1 st M1 can be implied by $\int \frac{\pm ku}{4u^2 \pm 5} \{du\}$	$k \neq 0$. Does not have to include integral sign	or du		
	Note	Condone 1st M1 for expressions of the f	Form $\int \left(\frac{\pm 1}{4u^3 \pm 5u} \cdot \frac{\pm k}{u^{-2}}\right) \{du\}, k \neq 0$			
	Note	Give 2^{nd} M0 for $\frac{3u}{8u} \ln(4u^2 + 5) \{+c\}$ (u	a's not cancelled) unless recovered in later work	ting		
	Note	E.g. Give 2 nd M0 for integration leading	g to $\frac{3}{4}u\ln(4u^2+5)$ as this is not in the form			
		$\pm \lambda \ln(4u^2 + 5)$				
I	±70 III(¬10 3)					

Note Condone 2nd M1 for poor bracketing, but do not allow poor bracketing for the final A1 E.g. Give final A0 for $\frac{3}{8} \ln 4x^{\frac{2}{3}} + 5$ {+c} unless recovered

Question Number	Scheme	Notes	Marks
3. (ii) Alt 1	$\int (e^x + 1)^3 dx; u = e^x + 1 \implies \frac{du}{dx} = e^x$		
	$ = \int \frac{u^3}{(u-1)} du = \int \left(u^2 + u + 1 + \frac{1}{u-1} \right) du $	$\int \left(u^2 + u + 1 + \frac{1}{u - 1}\right) \{du\} \text{ where } u = e^x + 1$	B1
	$= \frac{1}{3}u^3 + \frac{1}{2}u^2 + u + \ln(u - 1) \{+c\}$ or	At least 3 of either $\alpha u^2 \to \frac{\alpha}{3} u^3$ or $\beta u \to \frac{\beta}{2} u^2$ $\delta \to \delta u$ or $\frac{\lambda}{u-1} \to \lambda \ln(u-1)$; $\alpha, \beta, \delta, \lambda \neq 0$	M1
	$= \frac{1}{3}(e^{x} + 1)^{3} + \frac{1}{2}(e^{x} + 1)^{2} + (e^{x} + 1) + \ln(e^{x} + 1 - 1)$) {+c}	
3. (ii)	$= \frac{1}{3} (e^{x} + 1)^{3} + \frac{1}{2} (e^{x} + 1)^{2} + (e^{x} + 1) + x \{+c\}$	$\frac{1}{3}(e^{x}+1)^{3} + \frac{1}{2}(e^{x}+1)^{2} + (e^{x}+1) + x$ or $\frac{1}{3}(e^{x}+1)^{3} + \frac{1}{2}(e^{x}+1)^{2} + e^{x} + x$ simplified or un-simplified with or without $+ c$ Note: $\ln(e^{x}+1-1) \text{ needs to}$ be simplified to x for this mark	A1
Alt 2	$\int (e^x + 1)^3 dx; u = e^x \implies \frac{du}{dx} = e^x$	C (1)	
	$\left\{ = \int \frac{(u+1)^3}{u} du = \right\} \int \left(u^2 + 3u + 3 + \frac{1}{u}\right) du$	$\int \left(u^2 + 3u + 3 + \frac{1}{u}\right) \{du\} \text{ where } u = e^x$	B1
	$= \frac{1}{3}u^3 + \frac{3}{2}u^2 + 3u + \ln u \ \{+c\}$	At least 3 of either $\alpha u^2 \to \frac{\alpha}{3} u^3$ or $\beta u \to \frac{\beta}{2} u^2$ or $\delta \to \delta u$ or $\frac{\lambda}{u} \to \lambda \ln u$; $\alpha, \beta, \delta, \lambda \neq 0$	M1
	$= \frac{1}{3}e^{3x} + \frac{3}{2}e^{2x} + 3e^{x} + x\{+c\}$ Note:	$\frac{1}{3}e^{3x} + \frac{3}{2}e^{2x} + 3e^{x} + x,$ simplified or un-simplified with or without $+c$ ln(e^{x}) needs to be simplified to x for this mark	A1 [3]

Question Number	Scheme		Notes	Marks
4. (a)	$\frac{r}{h} = \tan 30 \Rightarrow r = h \tan 30 \left\{ \Rightarrow r = \frac{h}{\sqrt{3}} \text{ or } r = \frac{\sqrt{3}}{3} \right\}$ $\mathbf{or} \qquad \frac{h}{r} = \tan 60 \Rightarrow r = \frac{h}{\tan 60} \left\{ \Rightarrow r = \frac{h}{\sqrt{3}} \text{ or } r = \frac{\sqrt{3}}{3} \right\}$ $\mathbf{or} \qquad \frac{r}{\sin 30} = \frac{h}{\sin 60} \Rightarrow r = \frac{h \sin 30}{\sin 60} \left\{ \Rightarrow r = \frac{h}{\sqrt{3}} \text{ or } r = \frac{\sqrt{3}}{3} \right\}$ $\mathbf{or} \qquad h^2 + r^2 = (2r)^2 \Rightarrow r^2 = \frac{1}{3}h^2$	Correct use of trigonometry to find r in terms of h or correct use of Pythagoras to find r^2 in terms of h^2	M1	
	$\left\{ V = \frac{1}{3}\pi r^2 h \Rightarrow \right\} V = \frac{1}{3}\pi \left(\frac{h}{\sqrt{3}}\right)^2 h \Rightarrow V = \frac{1}{9}\pi h^3 *$ Co	proof of $V = \frac{1}{9}\pi h^3$ or $V = \frac{1}{9}h^3\pi$ nows $\frac{1}{9}\pi h^3$ or $\frac{1}{9}h^3\pi$ with some eference to $V =$ in their solution	A1 *	
(b) Way 1	$\frac{\mathrm{d}V}{\mathrm{d}t} = 200$			[2]
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{1}{3}\pi h^2$		$\frac{1}{3}\pi h^2$ o.e.	B1
	Either $ \bullet \left\{ \frac{dV}{dh} \times \frac{dh}{dt} = \frac{dV}{dt} \Rightarrow \right\} \left(\frac{1}{3}\pi h^2 \right) \frac{dh}{dt} = 200 $ $ \bullet \left\{ \frac{dh}{dt} = \frac{dV}{dt} \div \frac{dV}{dh} \Rightarrow \right\} \frac{dh}{dt} = 200 \times \frac{1}{\frac{1}{3}\pi h^2} $		either $\left(\text{their } \frac{dV}{dh}\right) \times \frac{dh}{dt} = 200$ or $200 \div \left(\text{their } \frac{dV}{dh}\right)$	M1
	When $h = 15$, $\frac{dh}{dt} = 200 \times \frac{1}{\frac{1}{3}\pi(15)^2} = \left\{ = \frac{200}{75\pi} = \frac{600}{225\pi} \right\}$		dependent on the previous M mark	dM1
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{8}{3p} (\mathrm{cm}\mathrm{s}^{-1})$		$\frac{8}{3p}$	A1 cao
				[4]
(b) Way 2	$\frac{\mathrm{d}V}{\mathrm{d}t} = 200 \implies V = 200t + c \implies \frac{1}{9}\pi h^3 = 200t + c$			J
	$\left(\frac{1}{3}\pi h^2\right)\frac{\mathrm{d}h}{\mathrm{d}t} = 200$		$\frac{1}{3}\pi h^2$ o.e.	B1
	When $h = 15, \ \frac{dh}{dt} = 200 \times \frac{1}{\frac{1}{3}\pi(15)^2} \left\{ = \frac{200}{75\pi} = \frac{600}{225\pi} \right\}$		as in Way 1 dependent on the previous M mark	dM1
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{8}{3\rho} (\mathrm{cm}\mathrm{s}^{-1})$		$\frac{8}{3\rho}$	A1 cao
				[4]

		0 4 4 1 4 1					
4 ()	3.7 .	Question 4 Notes					
4. (a)	Note	Allow M1 for writing down $r = h \tan 30$					
	Note	Give M0 A0 for writing down $r = \frac{h\sqrt{3}}{3}$ or $r = \frac{h}{\sqrt{3}}$ with no evidence of using trigonometry					
		on r and h or Pythagoras on r and h					
	Note	Give M0 (unless recovered) for evidence of $\frac{1}{3}\pi r^2 h = \frac{1}{9}\pi h^3$ leading to either $r^2 = \frac{1}{3}h^2$					
		or $r = \frac{h\sqrt{3}}{3}$ or $r = \frac{h}{\sqrt{3}}$					
(b)	B1	Correct simplified or un-simplified differentiation of V. E.g. $\frac{1}{3}\pi h^2$ or $\frac{3}{9}\pi h^2$					
	Note	$\frac{dV}{dh}$ does not have to be explicitly stated, but it should be clear that they are differentiating their V					
	M1	$\left(\text{their } \frac{dV}{dh}\right) \times \frac{dh}{dt} = 200 \text{ or } 200 \div \left(\text{their } \frac{dV}{dh}\right)$					
	dM1	dependent on the previous M mark					
		Substitutes $h=15$ into an expression which is a result					
		of either $200 \div \left(\text{their } \frac{dV}{dh} \right)$ or $200 \times \frac{1}{\left(\text{their } \frac{dV}{dh} \right)}$					
	A1	$\frac{8}{3p}$ (units are not required)					
	Note	Give final A0 for using $\frac{dV}{dt} = -200$ to give $\frac{dh}{dt} = -\frac{8}{3\pi}$, unless recovered to $\frac{dh}{dt} = \frac{8}{3\pi}$					

Question Number		Scheme				Notes	Marks
5.	x=1+t-	$-5\sin t, \ y = 2 - 4\cos t, \ -\pi \leqslant t \leqslant \pi$	A(k, 2), k	k > 0, lies o	n C		
(a)		=2,} $2 = 2 - 4\cos t \Rightarrow t = -\frac{\pi}{2}, \frac{\pi}{2}$ = $1 + \frac{\pi}{2} - 5\sin(\frac{\pi}{2})$ or $k \text{ (or } x) = 1$	$-\frac{\pi}{2}$ – 5 sin	$\left(-\frac{\pi}{2}\right)$	and some e	s $y = 2$ to find t vidence of using ir t to find $x =$	M1
		$=-\frac{\pi}{2}, k > 0,$ so $k = 6 - \frac{\pi}{2}$ or $\frac{12}{2}$			$k ext{ (or } x) =$	$6 - \frac{\pi}{2}$ or $\frac{12 - \pi}{2}$	
(b)	dx_{-1}	$-5\cos t$, $\frac{\mathrm{d}y}{\mathrm{d}t} = 4\sin t$	At least o	ne of $\frac{\mathrm{d}x}{\mathrm{d}t}$ o	$\frac{dy}{dt}$ correct ((Can be implied)	[2] B1
(0)	dt = 1	$-3\cos t$, $\frac{1}{dt} = 4\sin t$	Both	$\frac{\mathrm{d}x}{\mathrm{d}t}$ and $\frac{\mathrm{d}y}{\mathrm{d}t}$	are correct	(Can be implied)	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4s}{1-s}$	<u>sin t</u> 5 cos t	Α	applies thei	$\frac{\mathrm{d}y}{\mathrm{d}t}$ divided	I by their $\frac{dx}{dt}$ and	
	at $t = -\frac{\pi}{2}$	$\frac{dy}{dx} = \frac{4\sin\left(-\frac{\pi}{2}\right)}{1 - 5\cos\left(-\frac{\pi}{2}\right)} \{ = -4 \}$,			eir t into their $\frac{dy}{dx}$	M1
	2	$1-5\cos\left(-\frac{\pi}{2}\right)$,		side $-\pi \leqslant t \leqslant \pi$ for this mark	
		$= -4\left(x - \left(6 - \frac{\pi}{2}\right)\right)$ $-4)\left(6 - \frac{\pi}{2}\right) + c \implies y = -4x + 2 + c$	$A(\epsilon, \pi)$	aı	n equation of m_N is four Note: the	t line method for a tangent where ad using calculus neir k (or x) must	M1
	• 2=(-	$(6-\frac{1}{2})+c \Rightarrow y = -4x+2+c$	bracketing must be used or impli		e used or implied		
	$\begin{cases} y-2=-1 \end{cases}$	$-4x + 24 - 2\pi \Longrightarrow \} y = -4x + 26$	-2π		m	t on all previous tarks in part (b) $=-4x+26-2\pi$	A1 cso
					(p = -	4, $q = 26 - 2\pi$)	[5] 7
			Question 5	Notes			•
5. (a)	Note	M1 can be implied by either x or	$k = 6 - \frac{\pi}{2}$	or awrt 4.4	13 or <i>x</i> or <i>k</i>	$=\frac{\pi}{2}-4$ or awrt –	2.43
	Note	An answer of 4.429 without re			act answer is	s A0	
	Note	M1 can be earned in part (a) by w					π
	Note	Give M0 for not substituting their					$=-\frac{\pi}{2}$
	Note	If two values for <i>k</i> are found, they				`	
	Note	Condone M1 for $2 = 2 - 4\cos t \Rightarrow$	$\Rightarrow t = -\frac{\pi}{2}, \frac{\pi}{2}$	$\frac{u}{2} \Rightarrow x = 1$	$-\frac{\pi}{2}$ - $5\sin\left(\frac{\pi}{2}\right)$		
(b)	Note	The 1 st M mark may be implied by their value for $\frac{dy}{dx}$					
		e.g. $\frac{dy}{dx} = \frac{4\sin t}{1 - 5\cos t}$, followed by an answer of -4 (from $t = -\frac{\pi}{2}$) or 4 (from $t = \frac{\pi}{2}$)					
	Note	Give 1 st M0 for applying their $\frac{dx}{dt}$ divided by their $\frac{dy}{dt}$ even if they state $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$					
	2 nd M1	• applies $y-2 = (\text{their } m_T)(x-1)$					
		• applies $2 = (\text{their } m_T)(\text{their } k)$			=		
	N T (where k must be in terms of π are					
	Note	Note Correct bracketing must be used for 2 nd M1, but this mark can be implied by later working					

		Question 5 Notes Continued						
5. (b)	Note	The final A mark is dependent on all previous marks in part (b) being scored.						
		This is because the correct answer can follow from an incorrect $\frac{dy}{dx}$						
	Note	The first 3 marks can be gained by using degrees in part (b)						
	Note Condone mixing a correct t with an incorrect x or an incorrect t with a correct x for the marks							
	Note	Allow final A1 for any answer in the form $y = px + q$						
		E.g. Allow final A1 for $y = -4x + 26 - 2\pi$, $y = -4x + 2 + 4\left(6 - \frac{\pi}{2}\right)$ or						
		$y = -4x + \left(\frac{52 - 4\pi}{2}\right)$						
	Note	Do not apply isw in part (b). So, an incorrect answer following from a correct answer is A0						
	Note	Do not allow $y = 2(-2x+13-\pi)$ for A1						
	Note	$y = -4x + 26 - 2\pi$ followed by $y = 2(-2x + 13 - \pi)$ is condoned for final A1						

Question Number		Scheme	Notes	Marks
6.	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3}$	$\frac{y^2}{\cos^2 2x}$; $-\frac{1}{2} < x < \frac{1}{2}$; $y = 2$ at $x = -\frac{\pi}{8}$		
	$\int \frac{1}{y^2}$	$-dy = \int \frac{1}{3\cos^2 2x} dx$	Separates variables as shown Can be implied by a correct attempt at integration Ignore the integral signs	B1
	$\int \frac{1}{y^2}$	$dy = \int \frac{1}{3} \sec^2 2x dx$		
		$1 - 1(\tan 2x)$	$\pm \frac{A}{y^2} \to \pm \frac{B}{y}; A, B \neq 0$	M1
		$-\frac{1}{y} = \frac{1}{3} \left(\frac{\tan 2x}{2} \right) \{+c\}$	$\frac{\pm \lambda \tan 2x}{-\frac{1}{y} = \frac{1}{3} \left(\frac{\tan 2x}{2}\right)}$	M1 A1
		$-\frac{1}{2} = \frac{1}{6} \tan \left(2 \left(-\frac{\pi}{8} \right) \right) + c$	Use of $x = -\frac{\pi}{8}$ and $y = 2$ in an integrated equation <i>containing a constant of integration</i> , e.g. c	M1
	-	$-\frac{1}{2} = -\frac{1}{6} + c \Rightarrow c = -\frac{1}{3}$		
	-	$-\frac{1}{2} = -\frac{1}{6} + c \Rightarrow c = -\frac{1}{3}$ $-\frac{1}{y} = \frac{1}{6} \tan 2x - \frac{1}{3} = \frac{\tan(2x) - 2}{6}$		
	y =	$\frac{-1}{\frac{1}{6}\tan 2x - \frac{1}{3}} \text{or} y = \frac{6}{2 - \tan 2x} \text{or} y = \frac{6\cot 2x}{-1 + 2\cot 2x}$	$\frac{2x}{\cot 2x} \qquad \left\{ -\frac{1}{2} < x < \frac{1}{2} \right\}$	A1 o.e.
				[6] 6
		Question 6 N		1-
6.	B1	Separates variables as shown. dy and dx shoul can		
		be implied by later working. Ignore the integral side.	l signs. The number "3" may appear on	either
		E.g. $\int \frac{1}{y^2} dy = \int \frac{1}{3} \sec^2 2x dx$ or $\int \frac{3}{y^2} dy = \int \frac{1}{y^2} dy = \int \frac{1}$	$\frac{1}{\cos^2 2x} dx \text{ are fine for B1}$	
	Note	Allow e.g. $\int \frac{1}{y^2} \frac{dy}{dx} dx = \int \frac{1}{3} \sec^2 2x dx \text{ for B1 } 0$	or condone $\int \frac{1}{y^2} = \int \frac{1}{3} \sec^2 2x \text{ for B1}$	
	Note	B1 can be implied by correct integration of both	n sides	
	M1	$\pm \frac{A}{y^2} \to \pm \frac{B}{y}; \ A, B \neq 0$		
	M1	$\frac{1}{\cos^2 2x}$ or $\sec^2 2x \to \pm \lambda \tan 2x$; $\lambda \neq 0$		
	A1	$-\frac{1}{y} = \frac{1}{3} \left(\frac{\tan 2x}{2} \right)$ with or without '+ c'. E.g	$-\frac{6}{y} = \tan 2x$	
	M1	Evidence of using both $x = -\frac{\pi}{8}$ and $y = 2$ in an		ing c
	Note Note	This mark can be implied by the correct value of You may need to use your calculator to check the	of c	
	Note	Condone using $x = \frac{\pi}{9}$ instead of $x = -\frac{\pi}{9}$		
	A1	$y = \frac{-1}{\frac{1}{6}\tan 2x - \frac{1}{3}}$ or $y = \frac{6}{2 - \tan 2x}$ or any equ	ivalent correct answer in the form y	=f(x)
	Note	You can ignore subsequent working, which foll	ows from a correct answer	

		Question 6 Notes Continued
6.	Note	Writing $\frac{dy}{dx} = \frac{y^2}{3\cos^2 2x} \Rightarrow \frac{dy}{dx} = \frac{1}{3}y^2 \sec^2 2x$ leading to e.g.
		• $y = \frac{1}{9} y^3 \left(\frac{1}{2} \tan 2x \right)$ gets 2 nd M0 for $\pm \lambda \tan 2x$
		• $u = \frac{1}{3}y^2$, $\frac{dv}{dx} = \sec^2 2x \Rightarrow \frac{du}{dx} = \frac{2}{3}y$, $v = \frac{1}{2}\tan 2x$ gets 2^{nd} M0 for $\pm \lambda \tan 2x$
		because the variables have not been separated

Question Number	Scheme			No	otes		Marks
7.	$\overrightarrow{OA} = \begin{pmatrix} -3\\7\\2 \end{pmatrix}, \overrightarrow{AB} = \begin{pmatrix} 4\\-6\\2 \end{pmatrix}, \overrightarrow{OP} = \begin{pmatrix} 9\\1\\8 \end{pmatrix}; \overrightarrow{OQ} = \begin{pmatrix} 9\\1\\8 \end{pmatrix}$	$\begin{pmatrix} 0+4\mu\\ -6\mu\\ 3+2\mu \end{pmatrix}$ or \overline{O}	$\overrightarrow{QQ} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	$9 + \overline{2\mu}$ $1 - 3\mu$ $8 + \mu$	Le H	t θ = size of angle PAB . A , B lie on l_1 and P lies on l_2	
(a)	$\left\{\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} \Longrightarrow\right\}$			Att	tempts	to add \overrightarrow{OA} to \overrightarrow{AB}	M1
	$\overrightarrow{OB} = \begin{pmatrix} -3\\7\\2 \end{pmatrix} + \begin{pmatrix} 4\\-6\\2 \end{pmatrix} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \Rightarrow B(1,1,4)$			(1, 1,	4) or	$\begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} \text{ or } \mathbf{i} + \mathbf{j} + 4\mathbf{k}$	A1
	Note: M1 can be implied by a	(10)	rrect c	ompone	ents for	: B	[2]
(b)	$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} - \begin{pmatrix} -3\\7\\2 \end{pmatrix} = \begin{pmatrix} 12\\-6\\6 \end{pmatrix} \text{ or } \overrightarrow{PA}$	$\mathbf{f} = \begin{pmatrix} -12 \\ 6 \\ -6 \end{pmatrix}$			An a	attempt to find \overrightarrow{AP} or \overrightarrow{PA}	M1
	$\left\{\cos\theta = \frac{\overrightarrow{AP} \cdot \overrightarrow{AB}}{ \overrightarrow{AP} \overrightarrow{AB} }\right\} = \frac{\begin{pmatrix} 12\\-6\\6 \end{pmatrix}}{\sqrt{(12)^2 + (-6)^2 + (6)^2}}.$	(4) -6 2		_	for	applies dot product mula between their $(\overrightarrow{AP} \text{ or } \overrightarrow{PA})$ and $(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$ or a	dM1
	$ AP AB $ $\sqrt{(12)^2 + (-6)^2 + (6)^2}$	$\sqrt{(4)^2 + (-6)^2}$	$(2)^2 + (2)^2$)2		ole of these vectors	
	$\left\{\cos\theta = \frac{96}{\sqrt{216}.\sqrt{56}} \Rightarrow \cos\theta\right\} = \frac{4}{\sqrt{21}} \text{ or } \frac{4}{21}\sqrt{6}$	/21				$\frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$	A1
							[3]
(c)	$\left\{\cos\theta = \frac{4}{\sqrt{21}}\right\} \Rightarrow \sin\theta = \frac{\sqrt{21 - 16}}{\sqrt{21}} = \frac{\sqrt{5}}{\sqrt{21}} = \frac{\sqrt{5}}{\sqrt{21}}$	$\frac{105}{21}$ A c value				converting an exact act value for $\sin q$	M1
	Area $PAB = \frac{1}{2} (\sqrt{216}) (\sqrt{56}) (\frac{\sqrt{5}}{\sqrt{21}}) = 12\sqrt{2}$	$\overline{21}\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$	$= 12\sqrt{5}$	-	-	see notes	M1
	2 ()(√21) ((√21)]				12√5	A1 cao
			n+	∂d or :	n + //d	$\mathbf{p} \neq 0, \mathbf{d} \neq 0$ with	[3]
(d)	$\{l_2:\} \mathbf{r} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} + \mu \begin{pmatrix} 4\\-6\\2 \end{pmatrix} \text{ or } \mathbf{r} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} + \mu \begin{pmatrix} 2\\-3\\1\\1 \end{pmatrix}$	eit	_	$=9\mathbf{i}+\mathbf{j}$	j + 8 k	or $\mathbf{d} = 4\mathbf{i} - 6\mathbf{j} + 2\mathbf{k}$ tiple of $2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$	M1
	(8) (2) (8) (1	.)	Correct vector equation				A1
			<u> </u>				[2]
(e)	$\overrightarrow{BQ} = \begin{pmatrix} 9+4\mu\\1-6\mu\\8+2\mu \end{pmatrix} - \begin{pmatrix} 1\\1\\4 \end{pmatrix} \left\{ = \begin{pmatrix} 8+4\mu\\-6\mu\\4+2\mu \end{pmatrix} \right\} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \right\} = \begin{pmatrix} 1\\1\\4\end{pmatrix} \left\{ $	$= \begin{pmatrix} -8 - 4\mu \\ 6\mu \\ -4 - 2\mu \end{pmatrix}$		Appl	ies the	$ \overrightarrow{OQ} - \text{their } \overrightarrow{OB} $ $ \overrightarrow{OB} - \text{their } \overrightarrow{OQ} $	M1
	$\overrightarrow{BQ} \bullet \overrightarrow{AP} = 0 \Rightarrow \begin{pmatrix} 8+4\mu \\ -6\mu \\ 4+2\mu \end{pmatrix} \bullet \begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix} = 0 \Rightarrow \mu = \dots$ Applies $\overrightarrow{BQ} \bullet \overrightarrow{AP} = 0$, o.e. and solves the resulting equation to find a value for μ					dM1	
	$\Rightarrow 96 + 48\mu + 36\mu + 24 + 12\mu = 0 \Rightarrow 96\mu + 120$	$0 = 0 \Rightarrow \mu =$	$=-\frac{5}{4}$		μ=	$=-\frac{120}{96}$ or $\mu=-\frac{5}{4}$	A1 o.e.
	(9+4(-1.25)) (4)		Subst	itutes tl	neir va	lue of μ into \overrightarrow{OQ}	ddM1
	$\overrightarrow{OQ} = \begin{pmatrix} 9+4(-1.25) \\ 1-6(-1.25) \\ 8+2(-1.25) \end{pmatrix} = \begin{pmatrix} 4 \\ 8.5 \\ 5.5 \end{pmatrix} \Rightarrow Q(4, 8.5, 5.5)$	(4,	8.5, 5	5.5) or	$\begin{pmatrix} 4\\8.5\\5.5 \end{pmatrix}$	or $4i + 8.5j + 5.5k$	A1 o.e.
							[5]
							15

Question Number	Scheme		Notes	Marks
7.	$\overrightarrow{OA} = \begin{pmatrix} -3 \\ 7 \\ 2 \end{pmatrix}, \overrightarrow{AB} = \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix}, \overrightarrow{OP} = \begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix}; \overrightarrow{OQ} = \begin{pmatrix} 9 \\ 1 \\ 8 + 6 \end{pmatrix}$	$ \begin{vmatrix} -4\mu \\ -6\mu \\ -2\mu \end{vmatrix} \text{ or } \overrightarrow{OQ} = \begin{bmatrix} 9\\ 1\\ 8 \end{vmatrix} $	$ \begin{vmatrix} +2\mu \\ -3\mu \\ 8+\mu \end{vmatrix} $	
(e) Alt 1	$\overrightarrow{BQ} = \begin{pmatrix} 9 + 2\mu \\ 1 - 3\mu \\ 8 + \mu \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} \left\{ = \begin{pmatrix} 8 + 2\mu \\ -3\mu \\ 4 + \mu \end{pmatrix} \right\} \left\{ \overrightarrow{QB} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} \right\} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 1$	\ ' /)	Applies their \overrightarrow{OQ} – their \overrightarrow{OB} or their \overrightarrow{OB} – their \overrightarrow{OQ}	M1
	$\overrightarrow{BQ} \bullet \overrightarrow{AP} = 0 \Rightarrow \begin{pmatrix} 8 + 2\mu \\ -3\mu \\ 4 + \mu \end{pmatrix} \bullet \begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix} = 0 \Rightarrow \mu = \dots$	Applies I resulting	$\overrightarrow{BQ} \bullet \overrightarrow{AP} = 0$, o.e. and <i>solves</i> the g equation to find a value for μ	dM1
	$\Rightarrow 96 + 24\mu + 18\mu + 24 + 6\mu = 0 \Rightarrow 48\mu + 120 = 0$	$= 0 \Rightarrow \mu = -\frac{5}{2}$	$\mu = -\frac{5}{2}$	A1 o.e.
	(9+2(-2.5)) (4)	Substit	tutes their value of μ into \overrightarrow{OQ}	ddM1
	$\overline{OQ} = \begin{pmatrix} 9 + 2(-2.5) \\ 1 - 3(-2.5) \\ 8 + 1(-2.5) \end{pmatrix} = \begin{pmatrix} 4 \\ 8.5 \\ 5.5 \end{pmatrix} \Rightarrow Q(4, 8.5, 5.5)$	(4, 8.5, 5.5	5) or $\begin{pmatrix} 4\\ 8.5\\ 5.5 \end{pmatrix}$ or $4\mathbf{i} + 8.5\mathbf{j} + 5.5\mathbf{k}$	A1 o.e.
(1.)	V-A C Dec J A. H. d d d d d.		441. 4 to 1. d	[5]
(b) Alt 1	<u>Vector Cross Product:</u> Use this scheme if a vector (9) (-3) (12)	•	t method is being applied	
	$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 9\\1\\8 \end{pmatrix} - \begin{pmatrix} -3\\7\\2 \end{pmatrix} = \begin{pmatrix} 12\\-6\\6 \end{pmatrix} \text{ or } \overrightarrow{PA} = \begin{pmatrix} 12\\-6\\6 \end{pmatrix}$	` /	An attempt to find \overrightarrow{AP} or \overrightarrow{PA}	M1
	$\mathbf{d_1} \times \mathbf{d_2} = \begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix} \times \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 12 & -6 & 6 \\ 4 & -6 & 2 \end{vmatrix} = 24\mathbf{i} + 4\mathbf{i} + $	-0 j -48 k		
			es vector cross product formula	
	$\sin \theta = \frac{\sqrt{(24)^2 + (0)^2 + (-48)^2}}{\sqrt{(12)^2 + (-6)^2 + (6)^2} \cdot \sqrt{(4)^2 + (-6)^2 + (24)^2}}$	$\overline{\overline{)^2}}$	between their $(\overrightarrow{AP} \text{ or } \overrightarrow{PA})$ and $(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$ or a multiple of these vectors	dM1
	$\left\{\sin\theta = \frac{\sqrt{2880}}{\sqrt{216}.\sqrt{56}} = \sqrt{\frac{5}{21}}\right\} \left\{\Rightarrow\cos\theta\right\} = \sqrt{\frac{16}{21}}$	$\frac{1}{\sqrt{21}} = \frac{4}{\sqrt{21}} \text{ or } \frac{4}{21}\sqrt{21}$		
(b)	Cosine Rule			[3]
Alt 2	$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix} - \begin{pmatrix} -3 \\ 7 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix} \text{ or } \overrightarrow{PA} = \begin{pmatrix} -3 \\ 2 \end{pmatrix} = \begin{pmatrix} -3 \\ -6 \\ 6 \end{pmatrix}$	$= \begin{pmatrix} -12 \\ 6 \\ -6 \end{pmatrix}$	An attempt to find \overrightarrow{AP} or \overrightarrow{PA}	M1
	Note: $ \overrightarrow{PA} = \sqrt{216}$, $ \overrightarrow{AB} = \sqrt{56}$ and $ \overrightarrow{PB} = \sqrt{80}$			
	$(\sqrt{80})^2 = (\sqrt{216})^2 + (\sqrt{56})^2 - 2(\sqrt{216})(\sqrt{56})^2$	Applies the cosine rule the correct way round	dM1	
	$\cos\theta = \frac{216 + 56 - 80}{2\sqrt{216}\sqrt{56}} = \frac{192}{2\sqrt{216}\sqrt{56}}$			
	$\{\Rightarrow\cos\theta\} = \frac{4}{\sqrt{21}} \text{ or } \frac{4}{21}\sqrt{21}$		$\frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$	A1
				[3]

		Question 7 Notes
7. (b)	Note	If no "subtraction" seen, you can award 1st M1 for 2 out of 3 correct components of the difference
	Note	For dM1 the dot product formula can be applied as
		$\sqrt{(12)^2 + (-6)^2 + (6)^2} \cdot \sqrt{(4)^2 + (-6)^2 + (2)^2} \cos \theta = \begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix} \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix}$
		$\sqrt{(12)}$ + (0) + (0) + (0) + (2) cos 0 = 0
	Note	Evaluation of the dot product for $12\mathbf{i} - 6\mathbf{j} + 6\mathbf{k} & 2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ is not required for the dM1 mark
	A1	For either $\frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$ or $\cos\theta = \frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$
	Note	Using $12\mathbf{i} - 6\mathbf{j} + 6\mathbf{k}$ & $2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ gives $\cos \theta = \frac{24 + 18 + 6}{\sqrt{216} \cdot \sqrt{14}} = \frac{48}{12\sqrt{21}} = \frac{4}{21}$ or $\frac{4}{21}\sqrt{21}$
	Note	Using $2\mathbf{i} - \mathbf{j} + \mathbf{k}$ & $2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ gives $\cos \theta = \frac{4+3+1}{\sqrt{6}.\sqrt{14}} = \frac{8}{2\sqrt{21}} = \frac{4}{\boxed{21}}$ or $\frac{4}{\boxed{21}}\sqrt{21}$
	Note	Give M1M1A0 for finding $\theta = \text{awrt } 29.2$ without reference to $\cos \theta = \frac{4}{21}$ or $\frac{4}{21}\sqrt{21}$
	Note	Condone taking the dot product between vectors the wrong way round for the M1 dM1 marks
	Note	Vectors the wrong way round
		• E.g. taking the dot product between \overrightarrow{PA} and \overrightarrow{AB} to give $\cos \theta = -\frac{4}{\sqrt{21}}$ or $-\frac{4}{21}\sqrt{21}$
		with no other working is final A0
		• E.g. taking the dot product between \overrightarrow{PA} and \overrightarrow{AB} to give $\cos \theta = -\frac{4}{\sqrt{21}}$ or $-\frac{4}{21}\sqrt{21}$
		followed by $\cos \theta = \frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$ or just simply writing $\frac{4}{\sqrt{21}}$ or $\frac{4}{21}\sqrt{21}$ is final A1
	Note	In part (b), give M0dM0 for finding and using $\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{AB} = (5\mathbf{i} + 7\mathbf{j} + 6\mathbf{k})$
(c)	Note	Give 1 st M0 for $\sin \theta = \sin \left(\cos^{-1} \left(\frac{4\sqrt{21}}{21} \right) \right)$ or $\sin \theta = 1 - \left(\frac{4}{21}\sqrt{21} \right)^2$ unless recovered
	M1	Give 2 nd M1 for either
		• $\frac{1}{2}$ (their length AP)(their length AB)(their attempt at $\sin \theta$)
		• $\frac{1}{2}$ (their length AP)(their length AB) sin(their 29.2° from part (b))
		• $\frac{1}{2}$ (their length AP)(their length AB) $\sin \theta$; where $\cos \theta =$ in part (b)
	Note	$\frac{1}{2}(\sqrt{216})(\sqrt{56})\sin(\text{awrt }29.2^{\circ}\text{ or awrt }150.8^{\circ})$ {= awrt 26.8} without reference to finding $\sin\theta$
	37.	as an exact value if M0 M1 A0
	Note	Anything that rounds to 26.8 without reference to finding $\sin \theta$ as an exact value is M0 M1 A0
	Note	Anything that rounds to 26.8 without reference to $12\sqrt{5}$ is A0
	Note	If they use $\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{AB} = (5\mathbf{i} + 7\mathbf{j} + 6\mathbf{k})$ in part (b), then this can be followed through in part (c)
		for the 2 nd M mark as e.g. $\frac{1}{2} (\sqrt{110}) (\sqrt{56}) \sin \theta$
	Note	Finding $12\sqrt{5}$ in part (c) is M1 dM1 A1, even if there is little or no evidence of finding an exact
		value for $\sin \theta$. So $\frac{1}{2} (\sqrt{216}) (\sqrt{56}) \sin(29.2^{\circ}) = 12\sqrt{5}$ is M1 dM1 A1

	Question 7 Notes Continued						
7. (d)	Note	Writing $\mathbf{r} = \dots$ or $l_2 = \dots$ or				1 mark	_
	A1		Writing $\mathbf{r} = \begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix} + \mu \mathbf{d}$, where $\mathbf{d} = \mathbf{a}$ multiple of $2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$				
	Note	Writing $\mathbf{r} = \dots$ or $l_2 = \dots$ or	_	Line $2 = \dots$ is requir	red for the A ma	ırk	
	Note	Other valid $\mathbf{p} = \begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix}$ are e.g	$\mathbf{g}. \ \mathbf{p} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$	$ \begin{pmatrix} 3 \\ 5 \\ 0 \end{pmatrix} \text{ or } \mathbf{p} = \begin{pmatrix} 5 \\ 7 \\ 6 \end{pmatrix}. \text{ So} $	$\mathbf{r} = \begin{pmatrix} 13 \\ -5 \\ 10 \end{pmatrix} + \mu$	$\begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix}$ is M1 A1	
	Note	Give A0 for writing $l_2 : \begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix}$	$ + \mu \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix} $	or ans = $\begin{pmatrix} 9 \\ 1 \\ 8 \end{pmatrix}$ +	$\mu \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix} $ unless	recovered	
	Note	Using scalar parameter λ or	r other sca	nlar parameters (e.g.	μ or s or t) is f	fine for M1 and/o	or A1
(e)	ddM1	Substitutes their value of μ	into \overrightarrow{OQ}	, where \overrightarrow{OQ} = thei	r equation for l_2	2	
	Note	If they use $\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{AB} =$ for the 2 nd M mark and the 3	_	_	en this can be fo	ollowed through	in part (e)
	Note	You imply the final M mark from their μ			ectly followed th	nrough compone	nts for Q
Question Number		Scheme			Notes		Marks
7. (c)	Vector	Cross Product: Use this sch	eme if a v	ector cross product	method is bein	g applied	
Alt 1		$\vec{B} = \begin{pmatrix} 12 \\ -6 \\ 6 \end{pmatrix} \times \begin{pmatrix} 4 \\ -6 \\ 2 \end{pmatrix} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} \\ 12 & -6 \\ 4 & -6 \end{cases}$					
		1	Uses a	vector product and	$\sqrt{("24")^2 + ("0)^2}$	$(0'')^2 + ("-48")^2$	M1
	Area P.	$AB = \frac{1}{2}\sqrt{(24)^2 + (-48)^2}$	Uses a v	ector product and $\frac{1}{2}$	$\frac{1}{2}\sqrt{("24")^2+("0)^2}$	$(1)^{1}$) $(1)^{2}$ + $(1)^{2}$	M1
	$=12\sqrt{5}$					$12\sqrt{5}$	A1 cao
						T	[3]
7. (c) Alt 2	Note: c	ote: $\cos APB = \frac{5}{\sqrt{30}}$ or $\frac{1}{6}\sqrt{30}$ Note: $ \overrightarrow{PA} = \sqrt{216}$ and $ \overrightarrow{PB} = \sqrt{80}$					
	$\sin \theta = \frac{\sqrt{30 - 25}}{\sqrt{30}} = \frac{\sqrt{5}}{\sqrt{30}} = \frac{\sqrt{6}}{6}$ A correct method for converting an exact value for single value for cos q to an exact value for single value for cos q to an exact value for single value for cos q to an exact value for single value for cos q to an exact value for single value for cos q to an exact value for single value for cos q to an exact value for single value for cos q to an exact value for single value for cos q to an exact value for cos q t					M1	
	Area PA	$AB = \frac{1}{2} \left(\sqrt{216} \right) \left(\sqrt{80} \right) \left(\frac{\sqrt{5}}{\sqrt{30}} \right)$	$\begin{cases} = 12\sqrt{30} \end{cases}$	$\left(\frac{\sqrt{5}}{\sqrt{30}}\right)$ = $12\sqrt{5}$	$\frac{1}{2}$ (their PA)((their PB) $\sin \theta$	M1
		2 (\(\sqrt{30} \)	l	(430)]		12√5	A1 cao
							[3]

Question Number	Scheme		Notes		Marks
8. (a)	$\left\{ \int x \cos 4x dx \right\}$		$\pm \alpha x \sin 4x \pm \beta \int \sin 4x$	$x \{dx\}$, with or without dx ; α , $\beta \neq 0$	M1
	$= \frac{1}{4}x\sin 4x - \int \frac{1}{4}\sin 4x \left\{ dx \right\}$		$\frac{1}{4}x\sin 4x - \int \frac{1}{4}\sin 4x \left\{ \mathrm{d}x \right\}$	$\left.\right\}$, with or without dx	A1
	$= \frac{1}{4}x\sin 4x + \frac{1}{16}\cos 4x \{+c\}$		$\frac{1}{4}x\sin 4x + \frac{1}{16}\cos 4x \text{ o}$		A1
	T 10			ified or un-simplified	F03
	Note: You can ignore sub	sequent v	working following on from a c	^	[3]
(b) Way 1	$V = \int_0^{\frac{\pi}{4}} \left(\sqrt{x}\sin 2x\right)^2 \{dx\}$		Ignore limits a	$\pi \int (\sqrt{x} \sin 2x)^2 \{ dx \}$ and dx. Can be implied	B1
	(orrect equation linking	
	$\left\{ \left\{ x \sin^2 2x \mathrm{d}x = \right\} \right\}$		$\sin^2 2x$ and $\cos 4x$ (e.g.		
	$\int x \left(\frac{1-\cos 4x}{2}\right) \{dx\}$		attempt at applying this equation which can be income.	ion (or a manipulation	M1
		i	Simplifies $\int x \sin^2 2x \{dx\}$ to	$\int x \left(\frac{1 - \cos 4x}{2} \right) \{ dx \}$	A1
	$\left\{ \int \left(\frac{1}{2} x - \frac{1}{2} x \cos 4x \right) dx \right\}$ $= \frac{1}{4} x^2 - \frac{1}{2} \left(\frac{1}{4} x \sin 4x + \frac{1}{16} \cos 4x \right)$	Integrates to give $\pm Ax^2 \pm Bx \sin 4x \pm C \cos 4x$; $A, B, C \neq 0$ which can be simplified or un-simplified. Note: Allow one transcription error (on $\sin 4x$ or $\cos 4x$) in the copying of their answer from part (a) to part (b)			
	$\int_{0}^{\frac{\pi}{4}} (\sqrt{x} \sin 2x)^{2} dx = \left[\frac{1}{4}x^{2} - \frac{1}{8}x\right]$	$\sin 4x - \frac{1}{3}$	$\frac{1}{2}\cos 4x \bigg]_0^{\frac{\pi}{4}} \bigg\}$		
	$= \left(\frac{1}{4} \left(\frac{\pi}{4}\right)^2 - \frac{1}{8} \left(\frac{\pi}{4}\right) \sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{8} \left(\frac{\pi}{4$		$\left(\frac{\pi}{4}\right)\right) - \left(0 - 0 - \frac{1}{32}\cos 0\right)$	dependent on the previous M mark see notes	dM1
	$= \left(\frac{\pi^2}{64} + \frac{1}{32}\right) - \left(-\frac{1}{32}\right) = \frac{\pi^2}{64} + \frac{1}{16}$	5			
	So, $V = \pi \left(\frac{\pi^2}{64} + \frac{1}{16} \right)$ or $\frac{1}{64} \pi^3 + \frac{1}{16} \pi^3 + \frac{1}{16} \pi^4 + \frac{1}{1$	$\frac{1}{16}\pi$ or	$\frac{\pi}{2} \left(\frac{\pi^2}{32} + \frac{1}{8} \right) \text{ o.e.}$	two term exact answer	A1 o.e.
					[6]
			Question 8 Notes		9
	SC Special Case for the 2 nd	M and ^a	Reguestion 8 Notes B rd M mark for those who us	e their answer from pa	rt (a)
		and 3^{rd} M part (a)	1 marks for integration of the		······································
	_		give $\pm Ax^2 \pm Bx \sin kx \pm C \cos p$	ox	
			ive $\pm Ax^2 \pm Bx \sin kx \pm C \sin px$		
			give $\pm Ax^2 \pm Bx \cos kx \pm C \sin \mu$		
			ive $\pm Ax^2 \pm Bx \cos kx \pm C \cos p$		
	$k, p \neq 0, k, p \text{ can be } 1$	Pir 10 B			

8. (b)							
Way 2	${V =} \pi$	$\int_0^{\frac{\pi}{4}} \left(\sqrt{x}\sin 2x\right)^2 \left\{ \mathrm{d}x \right\}$		Ignore limits a	$\pi \int (\sqrt{x} \sin 2x)^2 \{ dx \}$ and dx. Can be implied	B1	
		For writing down a correct equation linking $\sin^2 2x$ and $\cos 4x$ (e.g. $\cos 4x = 1 - 2\sin^2 2x$) and some attempt at applying this equation (or a manipulation of this equation which can be incorrect) to their integral. Can be implied					
		Simplifies $\int x \sin^2 2x \{dx\}$ to $\int x \left(\frac{1-\cos 4x}{2}\right) \{dx\}$ Note: This mark can be implied for stating $u = x \text{ and } \frac{dv}{dx} = \frac{1-\cos 4x}{2} \text{ or } u = \frac{1}{2}x \text{ and } \frac{dv}{dx} = 1-\cos 4x$					
	$= x \left(\frac{1}{2}x\right)$	$-\frac{1}{8}\sin 4x\bigg) - \int \bigg(\frac{1}{2}x - \frac{1}{8}$	$(\sin 4x) dx$				
	$=x\bigg(\frac{1}{2}x$	Integrates to give $ (x - \frac{1}{8}\sin 4x) - (\frac{1}{4}x^2 + \frac{1}{32}\cos 4x) \{+c\} $ $ = \frac{\pm Ax^2 \pm Bx \sin 4x \pm C \cos 4x; A, B, C \neq 0}{\text{or an expression that can be simplified to this form}} $					
	$\left\{ \int_0^{\frac{\pi}{4}} \left(\sqrt{.} \right)^{\frac{\pi}{4}} \right\} dx$	$\int_{0}^{\infty} \sin 2x dx = \left[\frac{1}{4} x^2 - \frac{1}{8} \right]$	$x\sin 4x - \frac{1}{32}\cos 4$	$x \bigg]_0^{\frac{\pi}{4}} \bigg\}$			
	('	$\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - \left(0 - 0 - \frac{1}{32}\cos 0\right)$ dependent on the previous M mark see notes					
		$+\frac{1}{32}$ $-\left(-\frac{1}{32}\right) = \frac{\pi^2}{64} + \frac{1}{16}$					
	So, <i>V</i> =	$\pi \left(\frac{\pi^2}{64} + \frac{1}{16} \right) \text{ or } \frac{1}{64} \pi^3$	$+\frac{1}{16}\pi$ or $\frac{\pi}{2}\left(\frac{\pi^2}{32}\right)$	$+\frac{1}{8}$ o.e.		A1 o.e.	
			Question 8	Notes Continued		[6]	
8. (a)	SC	Give Special Case M1			arts" formula and using	5	
		Car v			of the correct formula		
(b)	Note	You can imply B1 for seeing $\pi \int y^2 \{dx\}$, followed by $y^2 = (\sqrt{x} \sin 2x)^2$ or $y^2 = x \sin^2 2x$				$\frac{1}{2}$ 2x	
	Note	If the form $\cos 4x = \cos^2 2x - \sin^2 2x$ or $\cos 4x = 2\cos^2 2x - 1$ is used, the 1 st M cannot be gained					
	Note	until $\cos^2 2x$ has been replaced by $\cos^2 2x = 1 - \sin^2 2x$ and the result is applied to their integral Mixing x 's and e.g. θ 's:					
		Condone $\cos 4\theta = 1 - 2\sin^2 2\theta$, $\sin^2 2\theta = \frac{1 - \cos 4\theta}{2}$ or $\lambda \sin^2 2\theta = \lambda \left(\frac{1 - \cos 4\theta}{2}\right)$					
	Final	if recovered in their int Complete method of a		$\frac{\pi}{2}$ and 0 to all terms of	an expression of the fo	rm	
	M1	_		7		· 	
-	Note			and subtracting the co	rrect way round. on $\sin 4x$ or $\cos 4x$) in	the	
	1,000	copying of their answe	•	-		-	

	Question 8 Notes Continued							
8. (b)	Note Evidence of a proper consideration of the limit of 0 on $\cos 4x$ where applicable is needed							
0, (0)	1,000	the finel M mark						
		final M mark $\frac{\pi}{2}$						
		E.g. $\left[\frac{1}{4}x^2 - \frac{1}{8}x\sin 4x - \frac{1}{32}\cos 4x\right]_0^{\frac{1}{4}} =$						
		• $ = \left(\frac{1}{4} \left(\frac{\pi}{4}\right)^2 - \frac{1}{8} \left(\frac{\pi}{4}\right) \sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32} \cos\left(4\left(\frac{\pi}{4}\right)\right)\right) + \frac{1}{32} \text{ is final M1} $						
		• $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - 0$ is final M0						
	• $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - \frac{1}{32}$ is final M0 (addin							
		• $\left(\frac{1}{4}\left(\frac{\pi}{4}\right)^2 - \frac{1}{8}\left(\frac{\pi}{4}\right)\sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32}\cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - \left(\frac{1}{32}\right)$ is final M1 (condone)						
		$\bullet \left(\frac{1}{4} \left(\frac{\pi}{4}\right)^2 - \frac{1}{8} \left(\frac{\pi}{4}\right) \sin\left(4\left(\frac{\pi}{4}\right)\right) - \frac{1}{32} \cos\left(4\left(\frac{\pi}{4}\right)\right)\right) - (0 + 0 + 0) \text{ is final M0}$						
8. (b)	Note	Alternative Method:						
		$\begin{cases} u = \sin^2 2x & \frac{dv}{dx} = x \\ \frac{du}{dx} = 2\sin 4x & v = \frac{1}{2}x^2 \end{cases}, \begin{cases} u = x^2 & \frac{dv}{dx} = \sin 4x \\ \frac{du}{dx} = 2x & v = -\frac{1}{4}\cos 4x \end{cases}$						
		$\left[\frac{\mathrm{d}u}{\mathrm{d}x} = 2\sin 4x \qquad v = \frac{1}{2}x^2 \right]^{2} \left[\frac{\mathrm{d}u}{\mathrm{d}x} = 2x \qquad v = -\frac{1}{4}\cos 4x \right]$						
		$\int x \sin^2 2x dx$						
		$= \frac{1}{2}x^2 \sin^2 2x - \int \frac{1}{2}x^2 (2\sin 4x) dx$						
		$=\frac{1}{2}x^2\sin^2 2x - \int x^2\sin 4x \mathrm{d}x$						
	$= \frac{1}{2}x^{2}\sin^{2} 2x - \left(-\frac{1}{4}x^{2}\cos 4x - \int 2x \left(-\frac{1}{4}\cos 4x\right) dx\right)$ $= \frac{1}{2}x^{2}\sin^{2} 2x - \left(-\frac{1}{4}x^{2}\cos 4x + \frac{1}{2}\int x\cos 4x dx\right)$							
		$= \frac{1}{2}x^2\sin^2 2x + \frac{1}{4}x^2\cos 4x - \frac{1}{2}\int x\cos 4x dx$						
	$= \frac{1}{2}x^{2}\sin^{2} 2x + \frac{1}{4}x^{2}\cos 4x - \frac{1}{2}\left(\frac{1}{4}x\sin 4x + \frac{1}{16}\cos 4x\right) \{+c\}$ $= \frac{1}{2}x^{2}\sin^{2} 2x + \frac{1}{4}x^{2}\cos 4x - \frac{1}{8}x\sin 4x - \frac{1}{32}\cos 4x \{+c\}$							
		$V = \pi \int_0^{\frac{\pi}{4}} \left(\sqrt{x} \sin 2x\right)^2 dx = \pi \left(\frac{\pi^2}{64} + \frac{1}{16}\right) \text{ or } \frac{1}{64}\pi^3 + \frac{1}{16}\pi \text{ or } \frac{\pi}{2} \left(\frac{\pi^2}{32} + \frac{1}{8}\right) \text{ o.e.}$						