

GCSE MATHEMATICS 8300/3F

Foundation Tier Paper 3 Calculator

Mark scheme

June 2020

Version 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2020 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

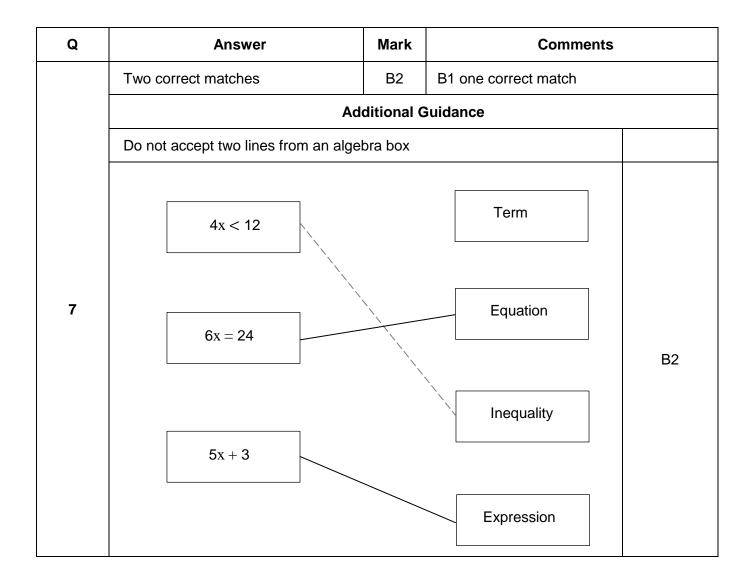
Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments
1	6.28	B1	

Q	Answer	Mark	Comments
2	80	B1	

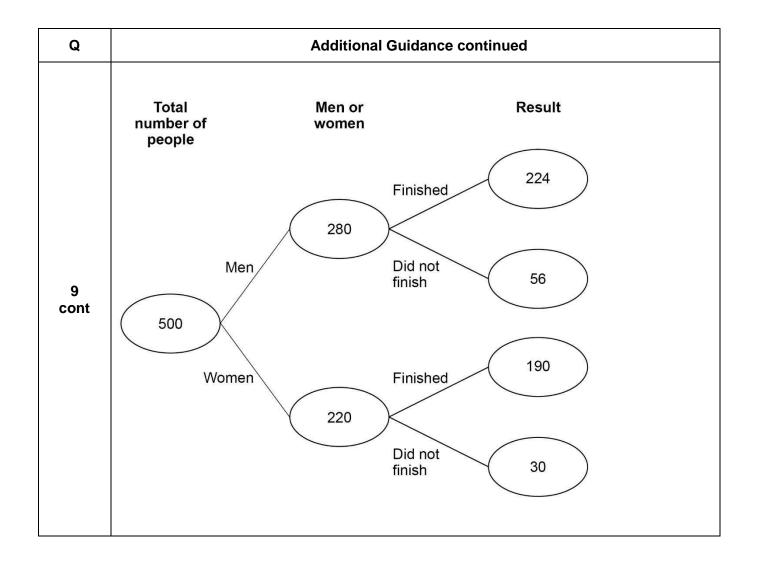
Q	Answer	Mark	Comments
3	0.07 < 0.7	B1	


Q	Answer	Mark	Comments
4	A and C	B1	

Q	Answer	Mark	Comments	
	35 × 8			
	or	B1		
	38 × 5			
5(a)	Additional Guidance			
	Ignore any answer to their calculation	1		
	Accept a correct response alone or selected in the working space if the answer box is blank or crossed out			

Q	Answer	Mark	Comments
5(b)	$5 \times 3 - 8$ or B1 $3 \times 5 - 8$ Additional Guidance		
3(5)	Ignore any answer to their calculation Accept a correct response alone or s answer box is blank or crossed out	1	

Q	Answer	Mark	Comments
5(c)	$\frac{6+5}{8+3} = 1$ or $\frac{6+5}{3+8} = 1$	B1	
	Ad	ditional G	Guidance
	Accept a correct response alone or s answer box is blank or crossed out	elected in	the working space if the


Q	Answer	Mark	Comments	
	Alternative method 1			
	267.5(0) – 125 or 142.5(0)	M1	oe	
	their 142.5(0) 7.5(0)	M1dep	oe	
	19	A1		
	Alternative method 2			
	$\frac{267.5(0)}{7.5(0)}$ or 35.6	M1	oe	
6	their 35.6 $-\frac{125}{7.5(0)}$	M1dep	oe	
	19	A1		
	Additional Guidance			
	Award M1 or M2 work even if not subsequently used			
	Build up methods to 142.5(0) score first M1 only unless fully correct			
	Build up methods from 125 score M0 unless fully correct			
	Accept 35.66 or 35.67 for 35.6			

Q	Answer	Mark	Comments
8	A E A R A T L E L R L T	B2	B1 three additional correct teams with no errors or repetitions or four additional correct teams with at most one error or repetition or five additional correct teams with one or two errors or repetitions SC1 A
	Add	ditional G	Guidance
	Full names are acceptable		
	Condone repetition of AE		
	Rows can be in any order		
	Accept lower case letters		
	For B1 condone teams in either colur	nn	

Q	Answer	Mark	Comments	
	280 or 30 in correct position	B1		
	500 – 280 or 220	M1		
	0.8(0) × their 280 or 224 or 0.2(0) × their 280 or 56	M1	oe	
9	their 220 – their 30 or 190 or 280 – their 224 or 280 – their 56 or 0.8(0) × their 280 or 224 and 0.2(0) × their 280 or 56	M1		
	Fully correct frequency tree	A1		
	Additional Guidance			
	Allow relative frequencies with denominator of 500 for B1 or M marks			
	Mark the diagram first, values in diagram have priority over working			
	Correct values may be incorrectly placed for method marks			

Additional Guidance continues on the next page

Q	Answer	Mark	Comments	
	1.8×1000 or 1800 or $1600 \div 1000$ or 1.6 or $1\frac{3}{4} \times 1000$ or 1750 or 1.75	M1		
10	Shortest distance 1600 (metres) $(1\frac{3}{4} \text{ (kilometres)})$ Longest distance 1.8 (kilometres) with no incorrect working	A1	any indication eg allow 1800 (metres) for 1 (kilometres)	.8
	Award M1 work even if not subsequently used			
	Correct order with no incorrect working			M1A1
	Correct order with incorrect working can score up to M1 eg 0.16 1.75 1.8 eg 1600 17500 18000			M1A0 M0A0
	1.6 or 1.75 with order incorrect			M1A0
	1800 or 1750 with order incorrect			M1A0

Q	Answer	Mark	Comments
11	180 – 103 – 49	M1	oe
11	28	A1	

Q	Answer	Mark	Comments
	360 – 75 – 165 or 120	M1	oe
	their 120 ÷ 4 or 30 or their 120 ÷ 4 × 3 or 90	M1dep	oe implied by one correctly drawn angle in pie chart $\pm 2^\circ$
12(a)	30° sector labelled Green or G and 90° sector labelled Red or R	A1	± 2° line must be ruled
	Additional Guidance		
	Both sectors must be correctly labelled with letters or words for the accuracy mark		

Q	Answer	Mark	Comments	
	$\frac{75}{360}$ or $\frac{360}{75}$ or $\frac{600}{360}$ or $\frac{360}{600}$	M1	oe eg 75 ÷ 360 eg 0.208 or 0.21 or 4.8 or 1.66 or 1.67 or 0.6	
12(b)	125	A1		
	Additional Guidance			
	125 out of 600			M1A1
	125 600			M1A0

Q	Answer	Mark	Comments		
	Alternative method 1				
	2.8(0) ÷ 0.2(0) or 14	M1	oe eg 280 ÷ 20		
	their $14 \times 0.5(0)$ or $7(.00)$ or their $14 \times (0.5(0) + 0.2(0))$ or their $14 \times 0.7(0)$ or 9.8	M1dep	oe eg 14 × 50 or 700 or 14 × 70 or 980		
13	9.80	A1			
	Alternative method 2				
	50 ÷ 20 or 2.5	M1	oe		
	their $2.5 \times 2.8(0)$ or $7(.00)$ or $(1 + \text{their } 2.5) \times 2.8(0)$ or 9.8	M1dep	oe eg their 2.5 × 280 or 700 or 980		
	9.80	A1			

Q	Answer	Mark	Comments	
	3 × 48 + 4 × 26 or 144 + 104 or 248	M1	ое	
	Any combination of ticket prices for 3 adults and 4 children involving at least one special offer	M1	oe eg 120 + 82 or 202 or 2 × 82 + 48 or 164 + 48 or 212 or 120 + 48 + 2 × 26 or 120 + 48 + 52 or 220 or 82 + 2 × 48 + 2 × 26 or 82 + 96 + 52 or 230	
14(a)	their 248 – their combination total for 3 adults and 4 children	M1dep	oe eg 248 – 120 – 82 if fully correct or 248 – 212 or 36 or 248 – 220 or 28 or 248 – 230 or 18 dep on second M mark	
	46	A1		
	Additional Guidance			
	Award M1, M2 or M3 work even if not subsequently used			
	If no correct working is shown for the first M mark then their 248 must be a value of 148 or greater			

Q	Answer	Mark	Commer	nts
	$48 \times \frac{1}{4} \text{ or } 12$ or $5 \times 48 \times \frac{1}{4} \text{ or } 60$	M1	oe implied by $48 \times \left(1 - \frac{1}{4}\right)$	or 36
14(b)	$5 \times 48 - 5 \times 48 \times \frac{1}{4}$ or $240 - 60$	M1dep	oe eg $5 \times 48 \times \frac{3}{4}$ or 2 or 5×36	$240 \times \frac{3}{4}$
	180	A1		
	Additional Guidance			
	180 and 240 – 180 = 60			M1M1A0

Q	Answer	Mark	Comments
15	n ²	B1	

Q	Answer	Mark	Comments	
	Correct ruled straight line through (0, 0) and (20, 72)	B2	$\pm \frac{1}{2}$ square B1 any one correct coordinates seen in a table of values with eg (1, 3.6) (2, 7.2) (3, 10.8) (5, 18) (10, 36) (15, 54) or (2)	$1 \le x \le 20$ (4, 14.4)
16(a)	Additional Guidance Ignore lines beyond (0, 0) to (20, 72) Ignore incorrect points plotted			
		To award B1, points plotted cannot be implied by an incorrect line, there must be a coordinate plotted or values in a table		
	Correct ruled line but too short			

Q	Answer	Mark	Comments
16(b)	14	B1ft	ft from their graph in part (a) $\pm \frac{1}{2}$ square
	Ade	ditional G	Guidance
	Answer must be a whole number		

Q	Answer	Mark	Comments		
	Alternative method 1 (using formula and conversion factor)				
	30 × 3.6 or 108 or 30 ÷ 1.61 or [18.6, 18.64] or 3.6 ÷ 1.61 or [2.2, 2.24] or 1.61 ÷ 3.6 or [0.4, 0.45]	M1	oe working in metres eg $30 \times 60 \times 60$ or 108000	0	
	their 108 ÷ 1.61 or their [18.6, 18.64] × 3.6 or their [2.2, 2.24] × 30 or 30 ÷ their [0.4, 0.45]	M1dep	oe working in metres eg 108000 ÷ 1610		
	[67, 67.1]	A1	[67, 67.1]		
	Alternative method 2 (using graph a	and conve	rsion factor)		
16(c)	Uses their graph to convert 30 m/s to km/h or 108	M1	eg $3 \times$ (their y at $x = 10$) or M1 (their y at $x = 10$) + (their y at $x = 2$) $\pm \frac{1}{2} \text{ square}$		
	their 108 ÷ 1.61	M1dep			
	[67, 67.1]	A1ft	ft from their graph in part (a)	and M2	
	Additional Guidance				
	Alt 2 For A1ft answers may be rounded to the nearest integer or rounded to 1 decimal place				
	eg their graph used correctly gives 114 km/h			M1	
	114 ÷ 1.61			M1dep	
	[70.8, 71]			A1ft	

Q	Answer	Mark	Comments	
	1 × 5 and 2 × 6 and 3 × 8 and 4 × 2 and 5 × 4 or 5 and 12 and 24 and 8 and 20 or 69	M1	allow one error	
17(a)	(5 + 12 + 24 + 8 + 20) ÷ 25 or 69 ÷ 25 or their 69 ÷ 25	M1dep A1	without working their 69 mus correct sum of their products	
	-	ditional G		
	Five products or values must be seen		//1 	
	Ignore attempt to round after 2.76 se	M1M1A1		
	69 ÷ 5	M1M0		
	5 + 12 + 24 + 8 + 20 ÷ 25 unless recovered			
	Correct products seen with 25 ÷ 5 of	or 25 ÷ 15	or 15 ÷ 5	MO

Q	Answer	Mark	Comments		
	$5+6+8$ or $25-(4+2)$ or 19 or $1-\frac{4+2}{25}$	M1	oe		
	19/25 or 0.76 or 76% A1 oe Additional Guidance				
17(b)	Ignore attempts to simplify or convert	a correct	fraction		
	Ignore probability words				
	19 out of 25 or 19 in 25 alone on the answer line with a correct answer in working				
	19 out of 25 or 19 in 25 together wi	M1A1			
	19: 25 with a correct answer together on the answer line				

Q	Answer	Mark	Comments		
	10 × x or 10x	M1	oe		
	T = 15 + 10x	A1	oe eg $T = 10x + 15$		
		711	allow $T = 15 + 10 \times x$		
	Ade	ditional G	Guidance		
	Condone x10 for 10x for M mark				
	Ignore units				
18	15 + 10x = T				
	Condone a correct rearrangement aft	ter T = 15	+ 10x seen		
	eg $T - 15 = 10x$ or $x = \frac{T - 15}{10}$				
	Do not ignore further incorrect working M1A				
	eg $T = 15 + 10x$ and $T = 25x$				
	$T = 5 \times 3 + 10 \times x$			M1A0	
	15 + 10x			M1A0	

Q	Answer	Mark	Comments	
	Rectangle with height 3 and width 2	B2	any position on the grid B1 rectangle with height 3 or v or rectangle with height 2 and or cuboid with rectangular from height 3 and width 2	width 3
	Ade	ditional G	Guidance	
	Accept unruled lines			
19	Front ele	vation		B2

Q	Answer	Mark	Comments	
	17 500	B1		
20(a)	20(a) Additional Guidance			
	Accept response in words			

Q	Answer	Mark	Comments	
	18 499	B1		
	Additional Guidance			
20(b)	Accept response in words			
	18499.9 or 18499			В0

Q	Answer	Mark	Comments
21	y = 5x - 2	B1	

Q	Answer	Mark	Commer	nts
	Two arcs of equal radius or a single arc, centre B, cutting BA and BC or a single arc cutting BC with radius = BA	M1	± 2 mm	
	Fully correct method of construction of bisector of angle ABC	A1		
	Add	ditional G	Buidance	
	Award M1 if correct arc(s) seen along	gside inco	rrect arc(s)	
	Angle bisector does not need to mee extended beyond AD			
	Accept an arc touching the line BA or			
22	No arcs seen on BC	MO		
	B			D

Q	Answer	Mark	Comments
23	2:1	B1	

Q	Answer	Mark	Commen	ts
	32 ² and 60 ² or 1024 and 3600 or 4624	M1		
24	$\sqrt{32^2 + 60^2}$ or $\sqrt{1024 + 3600}$ or $\sqrt{4624}$	M1dep		
24	68	A1		
	Additional Guidance			
	Answer only 68			M1M1A1
	$68 = 2\sqrt{17}$ incorrect further working			M1M1A0
	68 from scale drawing			M0M0A0
	68 from trigonometry			M0M0A0

Answer	Mark	Commen	ts
Alternative method 1			
$12 \times \frac{30}{60}$ or $12 \times \frac{1}{2}$ or 6	M1	oe eg 12 ÷ 2	
135 – 90 or 45	M1	oe eg $\frac{3}{4}$	
8	A1		
Alternative method 2			
$\frac{30}{135-90}$ or $\frac{30}{45}$ or $\frac{2}{3}$ or $\frac{135-90}{30}$ or $\frac{45}{30}$ or $\frac{3}{2}$	M1	oe eg 30: (135 – 90) or 30: 45 or 2:3 or (135 – 90): 30 or 45: 30 or 3:2	
$12 \times \frac{30}{135 - 90}$	M1dep	oe eg $\frac{12 \times 30}{45}$ eg $12 \div \frac{3}{2}$	
8	A1		
Ade	ditional G	Guidance	
Award M1 or M2 work even if not sub	sequently	vused	
Check diagram for working			
0.133 implies M1M1			
$12 \div 3 = 4$ and $12 - 4 = 8$			M2A1
Answer –8			M2A0
Ignore units unless 6 or 45 is from clearly incorrect working eg 12 (mph) = 60 minutes 6 (mph) = 30 minutes eg 12 (mph) = 30 minutes 6 (mph) = 15 minutes			M1 M0
	Alternative method 1 $12 \times \frac{30}{60}$ or $12 \times \frac{1}{2}$ or 6 $135 - 90$ or 45 8 Alternative method 2 $\frac{30}{135 - 90}$ or $\frac{30}{45}$ or $\frac{2}{3}$ or $\frac{135 - 90}{30}$ or $\frac{45}{30}$ or $\frac{3}{2}$ $12 \times \frac{30}{135 - 90}$ 8 Add Award M1 or M2 work even if not subscience of the subscience of	Alternative method 1 $12 \times \frac{30}{60}$ or $12 \times \frac{1}{2}$ or 6 $135 - 90$ or 45 Alternative method 2 $\frac{30}{135 - 90}$ or $\frac{30}{45}$ or $\frac{2}{3}$ or $\frac{135 - 90}{30}$ or $\frac{45}{30}$ or $\frac{3}{2}$ M1 $12 \times \frac{30}{135 - 90}$ M1 $12 \times \frac{30}{135 - 90}$ M1 Additional G Award M1 or M2 work even if not subsequently. Check diagram for working 0.133 implies M1M1 $12 \div 3 = 4$ and $12 - 4 = 8$ Answer -8 Ignore units unless 6 or 45 is from clearly incore eg 12 (mph) $= 60$ minutes $= 6$ (mph) $= 30$ m	Alternative method 1 $12 \times \frac{30}{60}$ or $12 \times \frac{1}{2}$ or 6 $135 - 90$ or 45 M1 Alternative method 2 $\frac{30}{135 - 90}$ or $\frac{30}{45}$ or $\frac{2}{3}$ or $\frac{135 - 90}{30}$ or $\frac{45}{30}$ or $\frac{3}{2}$ M1 $12 \times \frac{30}{135 - 90}$ or $\frac{45}{30}$ or $\frac{3}{2}$ M1 $12 \times \frac{30}{135 - 90}$ or $\frac{45}{30}$ or $\frac{3}{2}$ M1 $12 \times \frac{30}{135 - 90}$ M1 M1 $12 \times \frac{30}{135 - 90}$ Additional Guidance Award M1 or M2 work even if not subsequently used Check diagram for working 0.133 implies M1M1 12 ÷ 3 = 4 and 12 - 4 = 8 Answer -8 Ignore units unless 6 or 45 is from clearly incorrect working eg 12 (mph) = 60 minutes 6 (mph) = 30 minutes

Q	Answer	Mark	Comment	s
	$\frac{16}{20}$ or $\frac{20}{16}$ or $\frac{12}{20}$ or $\frac{20}{12}$ or 12: 9.6 or 9.6: 12 or 16: 9.6 or 9.6: 16	M1	oe eg $16 \div 20$ eg $\frac{4}{5}$ or $\frac{5}{4}$ or $\frac{3}{5}$ or eg 0.8 or 1.25 or 0.6 o	
	9.6	A1	oe	
26	Additional Guidance			
	Award M1 work even if not subsequently used			
Ignore further working in an attempt to round after answer 9.6 eg 9.6 in working with answer 10				M1A1
	12 × 20 ÷ 16			M1

Q	Answer	Mark	Comments
27	$x^2 - 2x + 1$	B1	

Q	Answer	Mark	Comments	
	a=2 and $b=4$ and $c=5$		B2 $a + b = 6$ with integer $a \ge 0$ and $b \ge 1$	er values of
	a = 4 and $b = 2$ and $c = 5$		B1 c = 5	
	or		or	
	a=0 and $b=6$ and $c=5$	В3	$a+b+c=11$ with integ $a\geqslant 0$ and $b\geqslant 0$ and $c\geqslant 0$	
			or	
			13th value = 3 and 14th stated	h value = 4
			or	
			correct median position	indicated on a list
28	Ad	ditional G	Buidance	
	Values may be seen alongside or in	the table		
	Blank answer line does not indicate z	zero for th	at value	
	eg $a = _{}$ $b = 6$ $c = 5$			B1
	a = 2 $b = 6$ $c = 5$			B1
	a = 11 b = 0 c = 0			B1
	a = 6 $b = 0$ $c = 5$			B1
	a = 6 $b = 0$ $c = 3$			B0

Q	Answer	Mark	Comments	
	Alternative method 1			
	$60 \times (1-0.15)$ or 60×0.85 or 51 or $40 \times (1-0.1)$ or 40×0.9 or 36	M1	oe 60×0.15 or 9 or 40×0.1 or 4	
	2 × their 51 + 2 × their 36 or 174	M1dep	oe 2 × their 9 + 2 × their 4 or 26 their 51, their 36, their 9 and their 4 must come from a correct method	
29	$(2 \times 60 + 2 \times 40) \times 0.75$ or 200×0.75 or 150 or $(2 \times 60 + 2 \times 40) \times 0.25$ or 200×0.25 or 50	M1	oe	
	174 and 150 and No or 224 and 200 and No or 26 and 50 and No	A1	SC3 176 and 150 and No or 226 and 200 and No or 24 and 50 and No	

Mark Scheme and Additional Guidance continue on the next page

Q	Answer	Mark	Commen	its	
	Alternative method 2				
	$60 \times (1 - 0.15)$ or 60×0.85 or 51 or $40 \times (1 - 0.1)$ or 40×0.9 or 36	M1	oe 60 × 0.15 or 9 or 40 × 0.1 or 4		
	2 × their 51 + 2 × their 36 or 174	M1dep	oe 2 × their 9 + 2 × their 4 or 26 their 51, their 36, their 9 and their 4 must come from a correct method		
29 cont	$\frac{(2\times60+2\times40)-\text{their }174}{2\times60+2\times40}\times100$ or $\frac{200-\text{their }174}{200}\times100$ or $13(\%)$ or $\frac{174}{200}\times100$ and $100-25$ or $87(\%)$ and $75(\%)$	M1dep	oe $\frac{2 \times \text{their } 9 + 2 \times \text{their } 4}{200} \times 100$ or $\frac{26}{200} \times 100 \text{ or } 13(\%)$ or $\frac{200 - (2 \times \text{their } 9 + 2 \times \text{their } 4)}{200} \times 100$ and $100(\%) - 25(\%)$ or $87(\%) \text{ and } 75(\%)$ oe $SC3 12\% \text{ and } No$		
			or 88% and 75%	and No	
	Additional Guidance				
	Ignore incorrect statements or calculations with full mark response				
	Consistently working with half of a perimeter can score up to 4 marks				
	SC3 must come from transposing length and width values				
	Accept length and width values transposed for up to 3 marks				
	eg 60×0.9 with 40×0.85 and $2 \times 54 + 2 \times 34$			M1M1	
	eg 60×0.9 with 40×0.9 and $2 \times 54 + 2 \times 36$ (not transposed) eg 60×0.1 or 40×0.15 or 6			M1M0 M1	

Q	Answer	Mark	Comments		
30	8c + 12 or -5c + 1	M1	may be seen in a grid implied by $3c + 12 + 1$	or 8c + 13 – 5c	
	3c + 13	A1			
	Additional Guidance				
	Do not ignore further working				
	eg 3c + 13 = 16c			M1A0	
	eg $3c + 13$, $c = \frac{-13}{3}$			M1A0	
	8c + 12 - 5c - 1			M1	
	8c + 3 - 5c + 1			M1	

Q	Answer	Mark	Comments		
31	$(4\mathbf{c} =) \begin{pmatrix} 16 \\ 36 \end{pmatrix}$ or $(3\mathbf{d} =) \begin{pmatrix} 6 \\ -15 \end{pmatrix}$ or $(answer =) \begin{pmatrix} 22 \\ \dots \end{pmatrix}$ or $(answer =) \begin{pmatrix} \dots \\ 21 \end{pmatrix}$	M1			
	(22) (21)	A1			
	Additional Guidance				
	Condone missing brackets and divisor lines for M mark				
	Must see $\binom{22}{21}$ to award the A mark, condone divisor line				
	Condone vectors written as coordinates				
	eg (16, 36)			M1	
	eg (22,)			M1	
	Allow 16 36 or 6 -15			M1	
	36 16 or –15 6			MO	
	22 not indicated as x component or 21 not indicated as y component without other work for M1			MO	