

GCE

Chemistry A

Unit F322: Chains, Energy and Resources

Advanced Subsidiary GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

Annotations available in RM Assessor

Annotation	Meaning
BP	Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and on each page of an additional object where there is no candidate response.
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
	Omission mark
RE	Rounding error
SF	Error in number of significant figures
~	Correct response

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning				
DO NOT ALLOW	Answers which are not worthy of credit				
IGNORE	Statements which are irrelevant				
ALLOW	Answers that can be accepted				
()	Words which are not essential to gain credit				
	Underlined words must be present in answer to score a mark				
ECF	Error carried forward				
AW	Alternative wording				
ORA	Or reverse argument				
ORA	Or reverse argument				

Question		Answer		Guidance
1	(a)	C₅H ₁₀ ✓	1	
1	(b)	A and E ✓	1	
1	(c)	C ✓	1	
1	(d)	B, C and F ✓	1	
1	(e)	A, B, C and F ✓	1	
1	(f)	C and F ✓	1	
1	(g)	2,3-dimethylpent-2-ene ✓	1	ALLOW absence of hyphens or extra hyphen or space, e.g. 2,3-dimethyl pent-2-ene ALLOW full stops or spaces between numbers e.g. 2.3 dimethylpent-2-ene
		Total	7	

June 2017

G	Quest	ion	Answer	Marks	Guidance
2	(a)		Product from H ₂ /Ni $H_{3}C - C + C + C + H + V$ $H_{3}C - C + H + V$ Product from Br ₂ $H_{3}C - C + C + H + V$	4	ALLOW correct structural OR displayed OR skeletal OR mixture of the above
			Product from HBr $H_{3}C \xrightarrow{CH_{3} CH_{2}CH_{3}}_{H_{3}C} \xrightarrow{CH_{3} CH_{2}CH_{3}}_{H_{3}C} \xrightarrow{CH_{3} CH_{2}CH_{3}}_{H_{3}C} \xrightarrow{H_{2}CH_{3}}_{H_{3}C} \xrightarrow{H_{3}C}_{H_{3}C} H_$		ALLOW in either order
2	(b)	(i)	Addition 🗸	1	

F32	F322 Mark schem			ne	June 2017
Q	Question		Answer		Guidance
2	(b)	(ii)	$n \xrightarrow{H_3C} C \longrightarrow CH_2CH_3 \xrightarrow{CH_2CH_3} \left[\begin{array}{c} CH_3 & CH_2CH_3 \\ I & I \\ C & C \\ H_3C & H \end{array} \right]_n$	2	For monomer, ALLOW correct molecular OR structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
			Correct repeat unit of polymer with side links \checkmark Balanced equation for formation of correct polymer - correct use of <i>n</i> in the equation and brackets \checkmark		For repeat unit, DO NOT ALLOW correct molecular formula <i>(question requires structure)</i> <i>n</i> on LHS can be at any height to the left of formula AND <i>n</i> on the RHS must be a subscript (essentially below the side link)
2	(b)	(iii)	Combustion for energy production ✓ cracking OR organic feedstock OR production of plastics/other chemicals ✓	2	Combustion alone is not sufficient Used as a fuel is not sufficient
			Total	9	

Question	Answer	Marks	Guidance
3 (a) (i)	$H_{H_{3}(CH_{2})_{4}} = \int_{C}^{\delta + C} Br^{\delta} - \int_{H_{1}}^{\delta + C} Br^{\delta} - \int_{OH_{1}}^{\delta + C} Br^{\delta} - \int_{OH_{2}}^{\delta + C} Br^{\delta} + \int_{OH_{2}}$	3	FULL ANNOTATIONS MUST BE USED THROUGHOUT Curly arrow must come from lone pair on O of HO ⁻ OR OH ⁻ OR from minus sign on HO ⁻ ion (No need to show lone pair if curly arrow came from negative charge) For organic product, ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
3 (a) (ii)	nucleophilic substitution ✓	1	

Mark scheme

June 2017

F	322	22 Mark scheme			June 2017
3	(a)	(iii)	heterolytic ✓	1	ALLOW 'heterolysis'
3	(a)	(iv)	Correct explanation of rate of hydrolysis for any two halogenoalkanes e.g. 1-iodohexane is faster (that 1-bromohexane) AND C–I bond has a lower bond enthalpy/is weaker/easier to break (than C–Br) ✓	2	IGNORE references to bond length, polarity and electronegativity
			Correct rate order of all three halogenoalkanes 1-iodohexane > 1-bromohexane > 1-chlorohexane OR Correct order of C–X bond enthalpy/bond strength/ease of breaking of all three halogenoalkanes $C-CI > C-Br > C-I \checkmark$		ALLOW iodo > bromo > chloro etc.
3	(b)	(i)	(Atom economy = $\frac{164.9}{245.8} \times 100$ =) 67.1 (%) \checkmark	1	Answer required to one decimal place

F3	F322		Mark scher	me June 20		
3	(b)	(ii)		6	FULL ANNOTATIONS MUST BE USED THROUGHOUT	
			(Initiation) Br ₂ \rightarrow 2Br AND UV/ultraviolet \checkmark		THROUGHOUT, ALLOW correct molecular formulae OR structural OR displayed OR skeletal OR mixture of structures	
			(Propagation) $C_6H_{14} + Br \rightarrow C_6H_{13} + HBr \checkmark$ $C_6H_{13} + Br_2 \rightarrow C_6H_{13}Br + Br \checkmark$		IGNORE dots IGNORE state symbols	
			(Termination) Two from the three termination equations below \checkmark 2Br \rightarrow Br ₂		NOTE: If mechanism uses Cl ₂ instead of Br ₂ , DO NOT ALLOW initiation equation BUT all other marks available by ECF	
			C_6H_{13} + Br \rightarrow $C_6H_{13}Br$			
			$2C_6H_{13} \ \to \ C_{12}H_{26}$			
			Homolytic fission 🗸			
			QWC : names of initiation, propagation and termination linked to at least one correct equation for each step \checkmark			

3	(b)) (iii)	b) (iii) IF answer = 9.34 OR 9.33 % award 3 marks	3	ALLOW ECF at each stage
			actual		
			$n(C_6H_{13}Br) \text{ produced} = \frac{2.31}{164.9} = 0.0140 \text{ (mol)} \checkmark$		ALLOW 3 SF up to calculator value of 0.01400848999 ALLOW use of 165 (gives exactly 0.0140)
			theoretical $n(C_6H_{13}Br) = n(C_6H_{14}) = \frac{12.90}{86.0} = 0.15(0) \text{ (mol) } \checkmark$		ALLOW approach via mass for 2nd and 3rd marks Theoretical mass $C_6H_{13}Br = 0.15 \times 164.9 = 24.735$ (g) \checkmark 2.31
			% yield = $\frac{0.014008}{0.150}$ × 100 = 9.34 (%) \checkmark use of unrounded values in calculator throughout		% yield = $\frac{2.31}{24.735}$ × 100 = 9.34 (%) ✓
			OR		
			% yield = $\frac{0.0140}{0.150}$ × 100 = 9.33 (%) use of 0.0140		

F3	F322		Mark scheme Ju			June 2017
3	(b)	(iv)	<i>formula of H</i> Mole ratio C : H : Br is 3.64 : 7.88 : 0.607	2 marks √	6	FULL ANNOTATIONS MUST BE USED THROUGHOUT ALLOW $\frac{43.66}{12.0}$: $\frac{7.88}{1.0}$: $\frac{48.46}{79.9}$
			Empirical formula = $C_6H_{13}Br \checkmark$ Structure of H and explanation any structural isomer of 1-bromohexane, e.g. $CH_3CH_2CH_2CH_2CHBrCH_3 \checkmark$	2 marks		IGNORE names ALLOW structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
			Formed by substitution (of H) at different chain ✓ <i>Structure of I and explanation</i> Any structural isomer of dibromohexane, e.g. CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CHBr ₂ ✓	positions along <i>2 marks</i> :		ALLOW structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
			Formed by further substitution ✓	Total	23	

 Boltzmann distribution (Seen once) Boltzmann distribution (Seen once) FULL ANNOTATIONS MUST BE USED THROUGHOUT Note:: Look for marking criteria within annotations on Boltzmann distribution diagrams IGNORE a slight inflexion on the curve lignoRE a a slight inflexion on the curve lignoRE a a curve that does not meet the drawing criteria DO NOT ALLOW a curve that does not meet the drawing criteria DO NOT ALLOW a curve that bends up at the end by more than one small square Effect on rate Rate increases with increased T Explanation (seen in context of catalyst OR temperature) more molecules have energy above activation energy OR more molecules have energy equal to the activation energy OR greater area under curve above the activation energy IGNORE more molecules have energy equal to the activation energy IGNORE more molecules have energy to react mark (as not linked to E_a) IGNORE more molecules have energy to react mark (as not linked to E_a) 	Question	Answer	Marks	Guidance
Image: Second structure Image: Second structure Image: Second structure Curve starts within one small square of the origin Image: Second structure Image: Second structure Curve starts within one small square of the origin Image: Second structure Image: Second structure Two Boltzmann distributions at different temperatures Image: Second structure Image: Second structure Two Boltzmann distributions at different temperatures Image: Second structure Image: Second structure Catalyst Two activation energies labelled with catalyst energy less Image: Second structure Image: Second structure Effect on rate Rate increases with catalyst Maximum of curve for higher 7 to right AND lower 7 lune and lower 7 curve Rate increases with increased T Explanation (seen in context of catalyst OR temperature) Maximum of curve for higher 7 to right Image: Mark increases have energy above activation energy Image: Second structure Image: Second structure Image: Or molecules have energy above activation energy Image: Second structure Image: Second structure Image: Or molecules have energy above activation energy Image: Second structure Image: Second structure Image: Or molecules have energy above activation energy Image: Second structure Image: Second stru	4	Boltzmann distribution (Seen once)	6	FULL ANNOTATIONS MUST BE USED THROUGHOUT
Curve starts within one small square of the origin IGNORE a 2nd curve that does not meet the drawing criteria AND curve does not touch the x axis at high energy ✓ IGNORE a 2nd curve that does not meet the drawing criteria DO NOT ALLOW a curve that bends up at the end by more than one small square DO NOT ALLOW a curve that bends up at the end by more than one small square Temperature Two Boltzmann distributions at different temperatures DO NOT ALLOW a curve that bends up at the end by more than one small square Catalyst Two activation energies labelled with catalyst energy less ✓ DO NOT ALLOW two curves for effect of catalyst Effect on rate Rate increases with catalyst ✓ Maximum of curve for higher T to right Rate increases with increased T ✓ Explanation (seen in context of catalyst OR temperature) More molecules have energy above activation energy OR OR Nore molecules have energy equal to the activation energy IGNORE more molecules have enough energy to react mark (as not linked to E _a)		Number Malendes		
Two Boltzmann distributions at different temperatures AND higher and lower T clearly identified ✓ Catalyst Two activation energies labelled with catalyst energy less ✓ Effect on rate Rate increases with catalyst ✓ Rate increases with increased T ✓ Explanation (seen in context of catalyst OR temperature) more molecules have energy above activation energy OR OR More molecules have energy equal to the activation energy OR		Curve starts within one small square of the origin AND curve does not touch the x axis at high energy \checkmark		IGNORE a 2nd curve that does not meet the drawing criteria DO NOT ALLOW a curve that bends up at the end by more than
Rate increases with catalyst \checkmark AND lower than maximum of lower T curve AND above lower T line at higher energy AND higher T line intersect lower T line only onceExplanation (seen in context of catalyst OR temperature)MOR more molecules have energy above activation energy OR more molecules have energy equal to the activation energy ORIGNORE more molecules have enough energy to react mark (as 		Two Boltzmann distributions at different temperatures AND higher and lower <i>T</i> clearly identified ✓ <i>Catalyst</i>		DO NOT ALLOW two curves for effect of catalyst
more molecules have energy above activation energy OR more molecules have energy equal to the activation energy OR OR		Rate increases with catalyst \checkmark		AND lower than maximum of lower <i>T</i> curve AND above lower <i>T</i> line at higher energy
OR more molecules have energy equal to the activation energy OR		Explanation (seen in context of catalyst OR temperature)		
		OR more molecules have energy equal to the activation energy		
		-		IGNORE (more) successful collisions

Question		Answer	Marks	Guidance
5	(a)	N ₂ : air AND H ₂ : water/H ₂ O OR natural gas/CH ₄ OR oil \checkmark	1	
5	(b)	Pressure: Right-hand side has fewer (gaseous) moles/molecules OR left-hand side has more (gaseous) moles/molecules ✓ Temperature: Statement that (Forward) reaction is exothermic OR (forward) reaction gives out heat OR reverse reaction is endothermic OR reverse reaction takes in heat ✓ Conditions AND equilibrium shift Low temperature AND high pressure AND equilibrium (position) shifts to the right ✓	3	 ORA throughout Note: Look for marking criteria within explanations for <i>p</i> and <i>T</i> IGNORE responses in terms of rate IGNORE comments about the 'exothermic side' or 'endothermic side' ALLOW suitable alternatives for 'to right', e.g.: towards products OR towards NH₃ OR in forward direction OR increases yield of NH₃/products
5	(c)	Low temperature gives a slow rate OR high temperatures needed to increase rate ✓ High pressure is expensive (to generate) OR high pressure provides a safety risk ✓	2	OR favours the right IGNORE high pressure is dangerous IGNORE high pressure is explosive

	F32	2	Mark sche	eme	June 2017
5	(d)		Any two from:	2	
					IGNORE catalyst not used up in reaction IGNORE catalyst can be re-used
					IGNORE enzymes (question is about iron as a catalyst)
			lower temperatures/lower pressures (can be used) OR lower energy demand ✓		IGNORE lower activation energy
			uses less fuel OR reduces CO₂ emissions ✓		IGNORE cheaper IGNORE less greenhouse gases OR reduces global warming
			(different reactions can be used with) greater atom economy OR less waste OR reduce use of hazardous/toxic/harmful/poisonous chemicals ✓		ALLOW increases atom economy
5	(e)	(i)	(Average enthalpy change) when one mole of bonds \checkmark	2	IGNORE energy required OR energy released
			of (gaseous covalent) bonds is broken \checkmark		DO NOT ALLOW bonds formed
5	(e)	(ii)	IF enthalpy change = –1272 (kJ mol ⁻¹) award 3 marks IF enthalpy change = +1272 (kJ mol ⁻¹) award 2 marks	3	
			(Energy for bonds broken = $12 \times 391 + 3 \times 498$) = 6186 (kJ) \checkmark		IGNORE sign
			(Energy for bonds made = $2 \times 945 + 12 \times 464$) = 7458 (kJ) \checkmark		IGNORE sign
			$\Delta H_{\rm r} = -1272 \; (\rm kJ \; mol^{-1}) \; \checkmark$		Correct sign required
					ALLOW ECF for bonds broken – bonds made IF at least one molar ratio is used e.g. $3 \times O=O$

	F322		Mark scheme		
5	(e)	(iii)	IF $\Delta H_c^{-\bullet} = -384$ (kJ mol ⁻¹) award 2 marks IF $\Delta H_c^{-\bullet} = -1536$ (kJ mol ⁻¹) award 1 marks	2	
			$(\Delta H) = -1272 - (6 \times 44) = -1536 \text{ (kJ mol}^{-1}) \checkmark$		ALLOW ECF from incorrect answer from (e)(ii) <i>i.e.</i> answer to (ii) – $(6 \times 44) = \dots (kJ \text{ mol}^{-1})$
			$\Delta H_{c}^{-2} = -1536 \div 4 = -384 \text{ (kJ mol}^{-1}) \checkmark$		ALLOW 1 mark for (+)384 (wrong sign for final answer) -252 (wrong sign for 44) -329 (no × 6) (+)252 (wrong sign for -1272 i.e. answer to (e)(ii))
					Any other number CHECK for ECF from first marking point expression with ONE error ONLY
			Total	15	

June 2017

C	Questi	ion	Answer	Marks	Guidance
6	(a)		IF $\Delta H_c = -1070 \text{ (kJ mol}^{-1}\text{)}$ award 4 marks IF $\Delta H_c = (+)1070 \text{ (kJ mol}^{-1}\text{)}$ award 3 marks (incorrect sign) IF $\Delta H_c = (\pm)1073 \text{ (kJ mol}^{-1}\text{)}$ award 3 marks (not 3 sig fig)	4	FULL ANNOTATIONS MUST BE USED THROUGHOUT
			Moles Amount, n, C ₃ H ₇ OH calculated correctly = 0.0302 (mol) \checkmark		
			Energy q calculated correctly = 32395 (J) OR 32.395 (kJ) \checkmark		Note: $q = 125 \times 4.18 \times 62$ ALLOW 3 SF up to calculator value of 32395 J IGNORE sign IGNORE working
			Calculating ΔH correctly calculates ΔH in kJ mol ⁻¹ to 3 or more sig figs \checkmark		Note: from 32395 J and 0.0302 mol $\Delta H = (-)1072.682119$ kJ mol ⁻¹ IGNORE sign at this intermediate stage ALLOW ECF from <i>n</i> (C ₃ H ₇ OH) and/or energy released
			Rounding and Sign calculated value of ΔH rounded to 3 sig. fig. with minus sign \checkmark		Final answer must have correct sign and three sig figs Answer is still -1070 from rounding of <i>q</i> to 32400 J
6	(b)	(i)	 (Enthalpy change) when one mole of a compound ✓ is formed from its elements ✓ 	3	ALLOW energy required OR energy released ALLOW one mole of substance OR one mole of product DO NOT ALLOW one mole of element
			298 K / 25 °C AND 1 atm / 100 kPa / 101 kPa / 1 bar ✓		IGNORE reference to concentration
6	(b)	(ii)	$6C(s) + 7H_2(g) + \frac{1}{2}O_2(g) \rightarrow CH_3(CH_2)_5OH(I)$	1	ALLOW $C_6H_{13}OH(I)$ OR $C_6H_{14}O(I)$
			correct species, state symbols and balancing \checkmark		DO NOT ALLOW multiples of this equation

	F322		Mark so	June 2017	
6	(b)	(iii)	IF answer = −3988 (kJ mol ⁻¹), award 3 marks IF answer = (+)3988 (kJ mol ⁻¹), award 2 marks	3	
					IF there is an alternative answer, check to see if there is any ECF credit possible
			6 × –394 + 7 × –286 shown/calculated/–4366 kJ \checkmark		ALLOW 1st mark for using 6 × (-)394 AND 7 × (-)286 OR (-)2364 AND (-)2002 OR (-)4366
			–378 and –4366 added/subtracted \checkmark		ALLOW ECF
			correct answer = $(-4366) - (-378) = -3988 \text{ kJ mol}^{-1} \checkmark$		Common incorrect answers are shown below Award 2 marks for -2018 OR -2272 OR -302 OR -4744 Award 1 mark for 2018 OR 2272 OR 302
	•	•	Total	11	

(Questi	on	Answer	Marks	Guidance
7	(a)		Fermentation $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2 \checkmark$	4	ALLOW correct molecular OR structural OR displayed OR skeletal formula OR mixture of the above IGNORE state symbols in equations
			yeast/zymase AND warm OR stated temperature between 20°C and 45°C AND anaerobic/absence of air ✓		ALLOW conditions shown in the equation IGNORE pressure A limited supply of oxygen/lack of oxygen is NOT sufficient DO NOT ALLOW acidic or alkaline conditions
			Hydration of ethene $C_2H_4 + H_2O \rightarrow C_2H_5OH \checkmark$		IGNORE pressure
			steam OR H₂O at ≥ 100°C AND acid (catalyst) ✓		IGNORE pressure ALLOW H ⁺ / named mineral acid / H ₂ SO ₄ / H ₃ PO ₄ DO NOT ALLOW 'weak acid' e.g. ethanoic acid
7	(b)	(i)	acid ✓	1	ALLOW H^+ / named mineral acid / H_2SO_4 / H_3PO_4
7	(b)	(ii)	H₂O ✓	1	
7	(b)	(iii)		2	CARE with orientation which could be rotated. IF correct unambiguous structural OR displayed OR mixture of formulae shown ALLOW one mark if both correct products are shown.
7	(b)	(iv)	Monitor absorption of alcohol O–H/3200–3550 cm ⁻¹ ✓	2	ALLOW monitor absorption of C–O/1000-1300 cm ⁻¹
			All alcohol has reacted when O–H peak has disappeared \checkmark		Note: 'alcohol peak' is not sufficient. The peak must be identified by wavenumber range OR bond

F322	Mark sche	eme	June 2017
7 (C)	pentan-1-ol into a carboxylic acid Reagents and conditions (QWC): Acid/H ⁺ and (potassium or sodium) dichromate/Cr ₂ O ₇ ²⁻ AND reflux \checkmark Structure CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ — $\begin{pmatrix} 0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	6	FULL ANNOTATIONS MUST BE USED THROUGHOUT QWC – the QWC mark is for linking the correct reagents and conditions to one of the reactions. ALLOW H ₂ SO ₄ and K ₂ Cr ₂ O ₇ ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) Bonds around C of carboxylic acid group must be displayed (<i>in</i> question) Structure can be awarded within equation ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) Bonds around C of carboxylic acid ALLOW any carboxylic acid ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) Bonds around C=O of ester group must be displayed (<i>in</i> question) Structure can be awarded within equation

(Question		Answer	Marks	Guidance
8	(a)	(i)	A species with an unpaired electron \checkmark	1	ALLOW atom OR molecule for 'species'
8	(a)	(ii)		1	Circles not required
8	(a)	(iii)	CI from action of UV on CFCs ✓	2	UV AND CFCs required.
			NO from aircraft OR lightning/thunderstorms ✓		IGNORE car engines
8	(a)	(iv)		2	IGNORE dots
			$CI + O_3 \rightarrow CIO + O_2 \checkmark$		
			$CIO + O \rightarrow CI + O_2 \checkmark$		ALLOW CIO + $O_3 \rightarrow CI + 2O_2$
					IGNORE $O + O_3 \rightarrow 2O_2$ IGNORE $2O_3 \rightarrow 3O_2$
8	(b)		toxicity OR	1	ALLOW causes acid rain OR can result in respiratory irritation
			low level ozone/photochemical smog ✓		IGNORE greenhouse gas

	F322		Mark sche	June 2017	
8	(c)	(i)	IR spectrum	5	FULL ANNOTATIONS MUST BE USED THROUGHOUT
			1700 cm ⁻¹ AND C=O/carbonyl group ✓		LOOK ON THE SPECTRUM for labelled peak which can be given credit
					ALLOW range from the <i>Data Sheet</i> C=O within range 1640–1750 cm ⁻¹ ;
			Mass spectrum (molecular ion) peak at $(m/z =)$ 58 gives molecular mass \checkmark		IGNORE names
			Molecular formula = $C_3H_6O \checkmark$		
			(Fragment ion) peak at (m/z =) 29 suggests CH ₃ CH ₂ OR C ₂ H ₅ OR CHO \checkmark		IGNORE absence of + charge for fragment ion
			Compound is CH_3CH_2CHO OR C_2H_5CHO \checkmark		ALLOW CH_3COCH_3 The fragment ion is the evidence that differentiates between CH_3CH_2CHO and CH_3COCH_3
8	(c)	(ii)	Compare spectrum with spectral database/spectra of known compounds ✓	1	
	1 1		Total	13	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2017