4767 Statistics 2

Question 1

(i)	EITHER: $\begin{aligned} & \begin{aligned} \mathrm{S}_{x y} & =\Sigma x y-\frac{1}{n} \Sigma x \Sigma y=316345-\frac{1}{50} \times 2331.3 \times 6724.3 \\ & =2817.8 \end{aligned} \\ & \begin{aligned} \mathrm{S}_{x x} & =\Sigma x^{2}-\frac{1}{n}(\Sigma x)^{2}=111984-\frac{1}{50} \times 2331.3^{2}=3284.8 \\ \mathrm{~S}_{y y} & =\Sigma y^{2}-\frac{1}{n}(\Sigma y)^{2}=921361-\frac{1}{50} \times 6724.3^{2}=17036.8 \\ r= & \frac{\mathrm{S}_{x y}}{\sqrt{\mathrm{~S}_{x x} \mathrm{~S}_{y y}}}=\frac{2817.8}{\sqrt{3284.8 \times 17036.8}}=0.377 \end{aligned} \end{aligned}$ OR: $\begin{aligned} & \operatorname{cov}(x, y)=\frac{\sum x y}{n}-\overline{x y}=316345 / 50-46.626 \times 134.486 \\ & \\ & =56.356 \end{aligned} \begin{aligned} \operatorname{rmsd}(x) & =\sqrt{\frac{S_{x x}}{n}}=\sqrt{ }(3284.8 / 50)=\sqrt{ } 65.696=8.105 \end{aligned} \quad \begin{aligned} & \operatorname{rmsd}(y)=\sqrt{\frac{S_{y y}}{n}}=\sqrt{ }(17036.8 / 50)=\sqrt{ } 340.736=18.459 \\ & r=\frac{\operatorname{cov}(\mathrm{x}, \mathrm{y})}{r m s d(x) \operatorname{rmsd}(y)}=\frac{56.356}{8.105 \times 18.459}=0.377 \end{aligned}$	M1 for method for $\mathrm{S}_{x y}$ M1 for method for at least one of $S_{x x}$ or $S_{y y}$ A1 for at least one of $\mathrm{S}_{x y}, \mathrm{~S}_{x x}$ or $\mathrm{S}_{y y}$ correct M1 for structure of r A1 (AWRT 0.38) M1 for method for cov (x, y) M1 for method for at least one msd A1 for at least on of $\operatorname{cov}(x, y), \operatorname{rmsd}(x)$ or rmsd (y) correct M1 for structure of r A1 (AWRT 0.38)	5
(ii)	$\mathrm{H}_{0}: \rho=0$ $\mathrm{H}_{1}: \rho \neq 0$ (two-tailed test) where ρ is the population correlation coefficient For $n=50,5 \%$ critical value $=0.2787$ Since $0.377>0.2787$ we can reject H_{0} : There is sufficient evidence at the 5% level to suggest that there is correlation between oil price and share cost	B1 for $\mathrm{H}_{0}, \mathrm{H}_{1}$ in symbols B1 for defining ρ. B1FT for critical value M1 for sensible comparison leading to a conclusion A1 for result B1 FT for conclusion in context	6
(iii)	Population The scatter diagram has a roughly elliptical shape, hence the assumption is justified.	B1 B1 elliptical shape E1 conclusion	3
(iv)	Because the alternative hypothesis should be decided without referring to the sample data and there is no suggestion that the correlation should be positive rather than negative.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	2
		TOTAL	16

Question 2

(i)	Meteors are seen randomly and independently There is a uniform (mean) rate of occurrence of meteor sightings	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	2
(ii)	(A) Either $\mathrm{P}(X=1)=0.6268-0.2725=0.3543$ Or $\mathrm{P}(X=1)=\mathrm{e}^{\mathrm{-}} \frac{1.3^{1}}{1!}=0.3543$ (B) Using tables: $\mathrm{P}(X \geq 4)=1-\mathrm{P}(X \leq 3)$ $\begin{aligned} & =1-0.9569 \\ & =0.0431 \end{aligned}$	M1 for appropriate use of tables or calculation A1 M1 for appropriate probability calculation A1	4
(iii)	$\begin{aligned} & \lambda=10 \times 1.3=13 \\ & \mathrm{P}(X=10)=\text { é }^{-} \frac{13^{10}}{10!}=0.0859 \end{aligned}$	B1 for mean M1 for calculation A1 CAO	3
(iv)	Mean no. per hour $=60 \times 1.3=78$ Normal approx. to the Poisson, $\quad X \sim N(78,78)$ $\begin{aligned} & \quad \mathrm{P}(X \geq 100)=\mathrm{P}\left(Z>\frac{99.5-78}{\sqrt{78}}\right) \\ & =\mathrm{P}(Z>2.434)=1-\Phi(2.434) \\ & =1-0.9926=0.0074 \end{aligned}$	B1 for Normal approx. B1 for correct parameters (SOI) B1 for continuity corr. M1 for correct Normal probability calculation using correct tail A1 CAO, (but FT wrong or omitted CC)	5
(v)	Either $\begin{aligned} & \mathrm{P}(\text { At least one })=1-\tilde{\mathrm{e}}^{\lambda} \frac{\lambda^{0}}{0!}=1-\tilde{\mathrm{e}}^{\lambda} \geq 0.99 \\ & \mathrm{e}^{\lambda} \leq 0.01 \\ & -\lambda \leq \ln 0.01, \text { so } \lambda \geq 4.605 \\ & 1.3 t \geq 4.605, \text { so } t \geq 3.54 \end{aligned}$ Answer $t=4$ Or $\begin{aligned} & t=1, \lambda=1.3, \mathrm{P}(\text { At least one })=1-\mathrm{e}^{1.3}=0.7275 \\ & t=2, \lambda=2.6, \mathrm{P}(\text { At least one })=1-\mathrm{e}^{2.6}=0.9257 \\ & t=3, \lambda=3.9, \mathrm{P}(\text { At least one })=1-\mathrm{e}^{3.9}=0.9798 \\ & t=4, \lambda=5.2, \mathrm{P}(\text { At least one })=1-\mathrm{e}^{5.2}=0.9944 \end{aligned}$ Answer $t=4$	M1 formation of equation/inequality using $\mathrm{P}(X \geq 1)=1-\mathrm{P}(\mathrm{X}=0)$ with Poisson distribution. A1 for correct equation/inequality M1 for logs A1 for 3.54 A1 for t (correctly justified) M1 at least one trial with any value of t A1 correct probability. M1 trial with either $t=3$ or $t=4$ A1 correct probability of $t=3$ and $t=4$ A1 for t	5
		TOTAL	19

Question 3

(i)	$\begin{aligned} & X \sim \mathrm{~N}\left(1720,90^{2}\right) \\ & \mathrm{P}(X<1700)=\mathrm{P}\left(Z<\frac{1700-1720}{90}\right) \\ & =\mathrm{P}(Z<-0.2222) \\ & \\ & =\Phi(-0.2222)=1-\Phi(0.2222) \\ & \\ & =1-0.5879 \\ & \\ & =0.4121 \end{aligned}$	M1 for standardising A1 M1 use of tables (correct tail) A1CAO NB ANSWER GIVEN	4
(ii)	$\begin{aligned} & \mathrm{P}(2 \text { of } 4 \text { below } 1700) \\ & =\binom{4}{2} \times 0.4121^{2} \times 0.5879^{2}=0.3522 \end{aligned}$	M1 for coefficient M1 for $0.4121^{2} \times$ 0.5879^{2} A1 FT (min 2sf)	3
(iii)	Normal approx with $\begin{aligned} & \mu=n p=40 \times 0.4121=16.48 \\ & \sigma^{2}=n p q=40 \times 0.4121 \times 0.5879=9.691 \\ & P(X \geq 20)=P\left(Z \geq \frac{19.5-16.48}{\sqrt{9.691}}\right) \\ & =P(Z \geq 0.9701)=1-\Phi(0.9701) \\ & =1-0.8340=0.1660 \end{aligned}$	B1 B1 B1 for correct continuity corr. M1 for correct Normal probability calculation using correct tail A1 CAO, (but FT wrong or omitted CC)	5
(iv)	$\mathrm{H}_{0}: \mu=1720$; H_{1} is of this form since the consumer organisation suspects that the mean is below 1720 μ denotes the mean intensity of 25 Watt low energy bulbs made by this manufacturer.	B1 E1 B1 for definition of μ	3
(v)	$\begin{aligned} \text { Test statistic } & =\frac{1703-1720}{90 / \sqrt{20}}=\frac{-17}{20.12} \\ & =-0.8447 \end{aligned}$ Lower 5\% level 1 tailed critical value of $z=-1.645$ $-0.8447>-1.645$ so not significant. There is not sufficient evidence to reject H_{0} There is insufficient evidence to conclude that the mean intensity of bulbs made by this manufacturer is less than 1720	M1 must include $\sqrt{ } 20$ A1FT B1 for -1.645 No FT from here if wrong. Must be -1.645 unless it is clear that absolute values are being used. M1 for sensible comparison leading to a conclusion. FT only candidate's test statistic A1 for conclusion in words in context	5
		TOTAL	20

Question 4

[^0]
[^0]: Deleted: $\mathbb{\pi}$

