4767 Statistics 2

Question 1

(i)	EITHER:		
	$S_{XY} = \Sigma xy - \frac{1}{n}\Sigma x\Sigma y = 316345 - \frac{1}{50} \times 2331.3 \times 6724.3$	M1 for method for S _{xy}	
	= 2817.8	M1 for method for at least one of S_{xx} or S_{yy}	
	$S_{XX} = \Sigma x^2 - \frac{1}{n} (\Sigma x)^2 = 111984 - \frac{1}{50} \times 2331.3^2 = 3284.8$	A1 for at least one of S_{xy} , S_{xx} or S_{yy} correct	
	$S_{yy} = \Sigma y^2 - \frac{1}{n} (\Sigma y)^2 = 921361 - \frac{1}{50} \times 6724.3^2 = 17036.8$	M1 for structure of <i>r</i>	
	$r = \frac{S_{xy}}{\sqrt{S_{xy}S_{yy}}} = \frac{2817.8}{\sqrt{3284.8 \times 17036.8}} = 0.377$	A1 (AWRT 0.38)	
	OR:	M1 for method for cov (<i>x</i> , <i>y</i>)	
	$\operatorname{cov} (x, y) = \frac{\sum xy}{n} - \overline{xy} = 316345/50 - 46.626 \times 134.486$ $= 56.356$	M1 for method for at least one msd	
	rmsd(x) = $\sqrt{\frac{S_{xx}}{n}} = \sqrt{(3284.8/50)} = \sqrt{65.696} = 8.105$	A1 for at least on of cov(x,y), $rmsd(x)$ or rmsd(y) correct	5
	$\operatorname{rmsd}(y) = \sqrt{\frac{S_{yy}}{n}} = \sqrt{(17036.8/50)} = \sqrt{340.736} = 18.459$	M1 for structure of r	
	$r = \frac{\text{cov}(x, y)}{\text{rmsd}(x)\text{rmsd}(y)} = \frac{56.356}{8.105 \times 18.459} = 0.377$	A1 (AWRT 0.38)	
(ii)	$ \begin{array}{l} H_0: \ \rho = 0 \\ H_1: \ \rho \neq 0 (\text{two-tailed test}) \end{array} $	B1 for H ₀ , H ₁ in symbols	
	where ρ is the population correlation coefficient For $n = 50$, 5% critical value = 0.2787	B1 for defining <i>p</i> B1FT for critical value	
	Since $0.377 > 0.2787$ we can reject H ₀ :	M1 for sensible comparison leading to	
	There is sufficient evidence at the 5% level to suggest that there is correlation between oil price and share cost	a conclusion A1 for result B1 FT for conclusion in context	6
(iii)	Population The scatter diagram has a roughly elliptical shape, hence the assumption is justified.	B1 B1 elliptical shape E1 conclusion	3
(iv)	Because the alternative hypothesis should be decided without referring to the sample data and there is no suggestion that the correlation should be positive rather than negative.	E1 E1	2
		TOTAL	16

		D4	1
(i)	Meteors are seen randomly and independently	B1	
(1)	There is a uniform (mean) rate of occurrence of meteor sightings	B1	2
(ii)	(\overline{A}) \overline{Either} P(X = 1) = 0.6268 - 0.2725 = 0.3543	M1 for appropriate use	
	Or $P(X = 1) = e^{-1} \frac{1 \cdot 3^{1}}{1!} = 0.3543$	of tables or calculation A1	
	(B) Using tables: $P(X \ge 4) = 1 - P(X \le 3)$	M1 for appropriate	4
	= 1 - 0.9569	probability calculation	-
	= 0.0431	A1	
<i>(</i>)	$\lambda = 10 \times 1.3 = 13$	B1 for mean	
(iii)	$P(X = 10) = e^{1} \frac{13^{10}}{10!} = 0.0859$	M1 for calculation A1 CAO	3
(iv)	Mean no. per hour = $60 \times 1.3 = 78$ Normal approx. to the Poisson, $X \sim N(78, 78)$	B1 for Normal approx. B1 for correct parameters (SOI)	
	$P(X \ge 100) = P\left(Z > \frac{99.5 - 78}{\sqrt{78}}\right)$	B1 for continuity corr.	5
	$= P(Z > 2.434) = 1 - \Phi(2.434)$ $= 1 - 0.9926 = 0.0074$	M1 for correct Normal probability calculation using correct tail A1 CAO, (but FT wrong or omitted CC)	5
(v)	<i>Either</i> P(At least one) = $1 - e^{\lambda} \frac{\lambda^0}{0!} = 1 - e^{\lambda} \ge 0.99$ $e^{\lambda} \le 0.01$ $-\lambda \le \ln 0.01$, so $\lambda \ge 4.605$ $1.3 \ t \ge 4.605$, so $t \ge 3.54$ Answer $t = 4$ <i>Or</i>	M1 formation of equation/inequality using $P(X \ge 1) = 1 - P(X = 0)$ with Poisson distribution. A1 for correct equation/inequality M1 for logs A1 for 3.54 A1 for <i>t</i> (correctly justified)	
	$t = 1, \lambda = 1.3, P(At \text{ least one}) = 1 - e^{1.3} = 0.7275$ $t = 2, \lambda = 2.6, P(At \text{ least one}) = 1 - e^{2.6} = 0.9257$ $t = 3, \lambda = 3.9, P(At \text{ least one}) = 1 - e^{3.9} = 0.9798$ $t = 4, \lambda = 5.2, P(At \text{ least one}) = 1 - e^{5.2} = 0.9944$ Answer $t = 4$	M1 at least one trial with any value of t A1 correct probability. M1 trial with either $t = 3$ or $t = 4$ A1 correct probability of t = 3 and $t = 4A1 for tTOTAL$	5

Question 2

Mark Scheme

Question 3

(i)	X ~ N(1720,90 ²)		
	$P(X < 1700) = P\left(Z < \frac{1700 - 1720}{90}\right)$	M1 for standardising A1	
	= P(Z < -0.2222) = $\Phi(-0.2222) = 1 - \Phi(0.2222)$	M1 use of tables (correct tail)	
	= 1 - 0.5879	A1CAO	4
	= 0.4121	NB ANSWER GIVEN	4
(ii)	P(2 of 4 below 1700) = $\binom{4}{2} \times 0.4121^2 \times 0.5879^2 = 0.3522$	M1 for coefficient M1 for $0.4121^2 \times 0.5879^2$ A1 FT (min 2sf)	3
(iii)	Normal approx with $\mu = np = 40 \times 0.4121 = 16.48$ $\sigma^2 = npq = 40 \times 0.4121 \times 0.5879 = 9.691$ $P(X \ge 20) = P\left(Z \ge \frac{19.5 - 16.48}{\sqrt{9.691}}\right)$ $= P(Z \ge 0.9701) = 1 - \Phi(0.9701)$ = 1 - 0.8340 = 0.1660	B1 B1 for correct continuity corr. M1 for correct Normal probability calculation using correct tail A1 CAO, (but FT wrong or omitted CC)	5
(iv)	H ₀ : μ = 1720; H ₁ is of this form since the consumer organisation suspects that the mean is below 1720 μ denotes the mean intensity of 25 Watt low energy bulbs made by this manufacturer.	Β1 Ε1 Β1 for definition of μ	3
(v)	Test statistic = $\frac{1703 - 1720}{90/\sqrt{20}} = \frac{-17}{20.12}$ = - 0.8447 Lower 5% level 1 tailed critical value of $z = -1.645$ - 0.8447 > - 1.645 so not significant. There is not sufficient evidence to reject H ₀ There is insufficient evidence to conclude that the mean intensity of bulbs made by this manufacturer is less than 1720	 M1 must include √20 A1FT B1 for –1.645 No FT from here if wrong. Must be –1.645 unless it is clear that absolute values are being used. M1 for sensible comparison leading to a conclusion. FT only candidate's test statistic A1 for conclusion in words in context 	5
		TOTAL	20

4767

Question 4

 frequent than expected. In 4WDs the numbers are roughly as expected In sports cars, female drivers are more frequent than expected. 					
 In saloons, n than expecte In people call 		5			
 In hatchback than expected 	nt E1				
Sports car $X^2 = 22.62$ Refer to \mathcal{X}_4^2 Critical value at 5% $22.62 > 9.488$ Result is significantThere is evidenceassociation betweerNB if H ₀ H ₁ reverseaward first B1or final	1.96 level = 9.488 e to sugge sex and typed, or 'corre	3.33 8 est that there is be of car.	M1 sensible comparison leading to a	12	
CONTRIBUTION Hatchback Saloon People carrier 4WD	Male 1.98 0.59 3.61 0.23	Female 3.38 1.00 6.15 0.40	M1 for valid attempt at (O-E) ² /E A1 for all correct		
4WD Sports car	17.01 29.61	9.99 17.39	one row or column correct)		
Saloon People carrier	70.56	41.44 30.34	values (to 2 dp) (allow A1 for at least		
EXPECTED Hatchback	Male 83.16	Female 48.84	M1 A2 for expected		

Deleted: ¶
