4762 Mechanics 2

1 (a)				
(i)	Let vel of Q be $v \rightarrow$			
(1)	$6 \times 1 = 4v + 2 \times 4$	M1	Use of PCLM	
		A1	Any form	
	$v = -0.5 \text{ so } 0.5 \text{ m s}^{-1}$	A1		
	in opposite direction to R	A1	Direction must be made clear. Accept – 0.5 only	
			if + ve direction clearly shown	
				4
(ii)	Let velocities after be R: $v_R \rightarrow$; S: v_S			
(11)	\rightarrow			
	PCLM +ve $\rightarrow 4 \times 2 - 1 \times 3 = 2v_R + 3v_S$	M1	PCLM	
	$2v_{R} + 3v_{S} = 5$	A1	Any form	
	$ \begin{array}{c} V_R + SV_S = S \\ NEL + ve \rightarrow \end{array} $	AI	Any form	
		3.61	NEL	
	$\frac{v_{\rm S} - v_{\rm R}}{-1 - 4} = -0.1$	M1	NEL	
	so $v_{\rm S} - v_{\rm R} = 0.5$	A1	Any form	
	Solving gives			
	$v_{\rm R} = 0.7 \rightarrow$	A1	Direction not required	
	$v_{\rm S} = 1.2 \rightarrow$	A1	Direction not required	
			Award cao for 1 vel and FT second	
				6
(iii)	R and S separate at 0.5 m s ⁻¹	M1	FT their result above. Either from NEL or from	
(111)	Rand 5 separate at 0.5 m s	IVII	difference in final velocities	
	Time to drop <i>T</i> given by		difference in final velocities	
	$0.5 \times 9.8T^2 = 0.4 \text{ so } T = \frac{2}{7} (0.28571)$	B1		
	so distance is $\frac{2}{7} \times 0.5 = \frac{1}{7}$ m	A1	cao	
		AI	Cao	
	(0.142857m)			3
(b)	before after			
	v			
	*			
	u u			
	$u \rightarrow u$	B1		
	$v \rightarrow (-)ev$	B1	Accept $v \rightarrow ev$	
	KE loss is			
	$\frac{1}{2}m(u^2+v^2)-\frac{1}{2}m(u^2+e^2v^2)$	M1	Attempt at difference of KEs	
	$= \frac{1}{2}mu^2 + \frac{1}{2}mv^2 - \frac{1}{2}mu^2 - \frac{1}{2}me^2v^2$	E1	Clear expansion and simplification	
	$= \frac{1}{2}mv^2\left(1-e^2\right)$		of correct expression	
				4
				17

			1	
2 (i)	GPE is $1200 \times 9.8 \times 60 = 705600$	B1	Need not be evaluated	
_(-)	Power is (705 600 + 1 800 000) ÷ 120	M1	power is WD ÷ time	
		B1	120 s	
	= 20 880 W = 20 900 W (3 s. f.)	A1	cao	
				4
(ii)	Using $P = Fv$. Let resistance be $R N$ 13500 = 18 F	M1	Use of $P = Fv$.	
	so $F = 750$	A1		
	As $v \operatorname{const}$, $a = 0 \operatorname{so} F - R = 0$			
	Hence resistance is 750 N	E1	Needs some justification	
	We require 750 × 200 = 150 000 J (= 150 kJ)	M1	Use of WD = Fd or Pt	
		F1	FT their F	5
(iii)		M1	Use of W-E equation with 'x'	
(III)	$\frac{1}{2} \times 1200 \times (9^2 - 18^2)$	B1	2 KE terms present	
	` '		_	
	$= 1200 \times 9.8 \times x \sin 5 - 1500x$	M1 A1	GPE term with resolution GPE term correct	
		A1	All correct	
	Hence $145800 = 475.04846x$	AI	All correct	
	so $x = 306.91$ so 307 m (3 s, f,)	A1	cao	
				6
(iv)	P = Fv	B1		
(11)	and N2L gives $F - R = 1200a$	B1		
	Substituting gives			
	P = (R + 1200a)v	E1	Shown	
	If $a \neq 0$, v is not constant. But P and R			
	are constant so a cannot be constant.	E1		
				4
				19
3 (i)	Let force be <i>P</i>			
(A)	a.c. moments about C			
` /	$P \times 0.125 - 340 \times 0.5 = 0$	M1	Moments about C. All forces present. No extra	
			forces.	
		A1	Distances correct	
	P = 1360 so 1360 N	A1	cao	3
(i) (<i>B</i>)				
	c.w. moments about E	3.51	Manager Land E. All C.	
	$P \times 2.125 - 340 \times (2 - 0.5) = 0$	M1	Moments about E. All forces present. No extra	
		A 1	forces.	
	P = 240 so 240 N	A1 A1	Distances correct cao	
	1 - 270 30 270 1	A1		3
			1	ر ا

(ii)	$Q \sin \theta \times 2.125 + Q \cos \theta \times 0.9$ $= \frac{25.5Q}{13} + \frac{4.5Q}{13}$	M1 B1	Moments expression. Accept $s \leftrightarrow c$. Correct trig ratios or lengths	
	$= \frac{30Q}{13} \text{ so } \frac{30Q}{13} \text{ N m}$	E1	Shown	3
(iii)	We need $\frac{30Q}{13} = 340 \times 1.5$ so $Q = 221$ Let friction be F and normal reaction R Resolve \rightarrow	M1 E1	Moments equn with all relevant forces Shown	
	$221\cos\theta - F = 0$ so $F = 85$ Resolve \uparrow $221 \sin\theta + R = 340$	M1 A1 M1		
	so $R = 136$	A1		
	$F < \mu R$ as not on point of sliding	M1	Accept ≤ or =	
	so 85<136μ	A 1	Accept \leq . FT their F and R	
	so $\mu > \frac{5}{8}$	E1		
				9
				18
4 (i)	$4000 \left(\frac{\overline{x}}{\overline{y}}\right) = 4800 \left(\frac{30}{40}\right) - 800 \left(\frac{50}{20}\right)$	M1	Any complete method for c.m.	
		A1	Either one RHS term correct or one component of both RHS terms correct	
	so $\overline{x} = 26$	E1		
	$\overline{y} = 44$	A1	[SC 2 for correct \overline{y} seen if M 0]	
				4
(ii)	$250\left(\frac{\overline{x}}{\overline{y}}\right) \tag{20}$	M1	Any complete method for c.m.	
	$=110 \binom{0}{55} + 40 \binom{20}{0} + 40 \binom{40}{20} + 20 \binom{50}{40} + 40 \binom{60}{60}$	B1	Any 2 edges correct mass and c.m. or any 4 edges correct with mass and <i>x</i> or <i>y</i> c.m. coordinate correct.	
	$\overline{x} = 23.2$ $\overline{y} = 40.2$	B1 E1 A1	At most one consistent error	5
L		L	1	ا ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ

(iii) Q	
B1 Indicating c.m. vertically below Q A0.2 N	
Angle is $\arctan\left(\frac{23.2}{110-40.2}\right)$ B1 Clearly identifying correct angle (may be and lengths Award for $\arctan\left(\frac{b}{a}\right)$ where $b=23.2$ and or 40.2 or where $b=69.8$ or 40.2 and $a=4$ Allow use of their value for y only.	1 <i>a</i> = 69.8
= 18.3856 so 18.4° (3 s. f.) A1 cao	4
(iv) $10\left(\frac{\overline{x}}{\overline{y}}\right) = 2 \times 1.5 \times \binom{26}{44} + 7\binom{23.2}{40.2}$ M1 Combining the parts using masses B1 Using both ends	
$\overline{x} = 24.04 \text{ so } 24.0 \text{ (3 s.f.)}$ $\overline{y} = 41.34 \text{ so } 41.3 \text{ (3 s.f.)}$ All correct cao F1 their y values only.	_
	5 18