4762 Mechanics 2

$\begin{aligned} & 1 \text { (a) } \\ & \text { (i) } \end{aligned}$	Let vel of Q be $v \rightarrow$ $6 \times 1=4 v+2 \times 4$ $v=-0.5 \text { so } 0.5 \mathrm{~m} \mathrm{~s}^{-1}$ in opposite direction to R	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Use of PCLM Any form Direction must be made clear. Accept -0.5 only if + ve direction clearly shown	4
(ii)	Let velocities after be R: $v_{\mathrm{R}} \rightarrow$; S: v_{S} $\begin{aligned} & \rightarrow \\ & \text { PCLM }+\mathrm{ve} \rightarrow 4 \times 2-1 \times 3=2 v_{\mathrm{R}}+3 v_{\mathrm{S}} \\ & 2 v_{\mathrm{R}}+3 v_{\mathrm{S}}=5 \\ & \mathrm{NEL}+\mathrm{ve} \rightarrow \\ & \frac{v_{\mathrm{S}}-v_{\mathrm{R}}}{-1-4}=-0.1 \\ & \text { so } v_{\mathrm{S}}-v_{\mathrm{R}}=0.5 \end{aligned}$ Solving gives $\begin{aligned} & v_{\mathrm{R}}=0.7 \rightarrow \\ & v_{\mathrm{S}}=1.2 \rightarrow \end{aligned}$	M1 A1 M1 A1 A1 A1	PCLM Any form NEL Any form Direction not required Direction not required Award cao for 1 vel and FT second	6
(iii)	R and S separate at $0.5 \mathrm{~m} \mathrm{~s}^{-1}$ Time to drop T given by $0.5 \times 9.8 T^{2}=0.4 \text { so } T=\frac{2}{7}(0.28571 \ldots)$ so distance is $\frac{2}{7} \times 0.5=\frac{1}{7} \mathrm{~m}$ (0.142857...m)	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	FT their result above. Either from NEL or from difference in final velocities cao	3
(b)	$u \rightarrow u$ $v \rightarrow(-) e v$ KE loss is $\begin{aligned} & \frac{1}{2} m\left(u^{2}+v^{2}\right)-\frac{1}{2} m\left(u^{2}+e^{2} v^{2}\right) \\ & =\frac{1}{2} m u^{2}+\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}-\frac{1}{2} m e^{2} v^{2} \\ & =\frac{1}{2} m v^{2}\left(1-e^{2}\right) \end{aligned}$	B1 B1 M1 E1	Accept $v \rightarrow e v$ Attempt at difference of KEs Clear expansion and simplification of correct expression	
				4
				17

2(i)	GPE is $1200 \times 9.8 \times 60=705600$ Power is $(705600+1800000) \div 120$ $=20880 \mathrm{~W}=20900 \mathrm{~W} \text { (3 s. f.) }$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	Need not be evaluated power is WD \div time 120 s cao	4
(ii)	Using $P=F v$. Let resistance be $R \mathrm{~N}$ $13500=18 F$ so $F=750$ As v const, $a=0$ so $F-R=0$ Hence resistance is 750 N We require $750 \times 200=150000 \mathrm{~J}$ (= 150 kJ)	M1 A1 E1 M1 F1	Use of $P=F v$. Needs some justification Use of WD $=F d$ or $P t$ FT their F	
(iii)	$\begin{aligned} & \frac{1}{2} \times 1200 \times\left(9^{2}-18^{2}\right) \\ & =1200 \times 9.8 \times x \sin 5-1500 x \end{aligned}$ Hence $145800=475.04846 \ldots x$ $\text { so } x=306.91 \ldots \text { so } 307 \mathrm{~m}(3 \mathrm{~s}, \mathrm{f},)$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \\ & \text { A1 } \end{aligned}$	Use of W-E equation with ' x ' 2 KE terms present GPE term with resolution GPE term correct All correct cao	6
(iv)	$P=F v$ and N2L gives $F-R=1200 a$ Substituting gives $P=(R+1200 a) v$ If $a \neq 0, v$ is not constant. But P and R are constant so a cannot be constant.	B1 B1 E1 E1	Shown	
				4
				19
$\begin{array}{\|l} \hline 3 \text { (i) } \\ (A) \end{array}$	Let force be P a.c. moments about C $P \times 0.125-340 \times 0.5=0$ $P=1360 \text { so } 1360 \mathrm{~N}$	M1 A1 A1	Moments about C. All forces present. No extra forces. Distances correct cao	3
(i) (B)	Let force be P c.w. moments about E $P \times 2.125-340 \times(2-0.5)=0$ $P=240 \text { so } 240 \mathrm{~N}$	M1 A1 A1	Moments about E. All forces present. No extra forces. Distances correct cao	3

(ii)	$\begin{aligned} & Q \sin \theta \times 2.125+Q \cos \theta \times 0.9 \\ & =\frac{25.50}{13}+\frac{4.50}{13} \\ & =\frac{309}{13} \text { so } \frac{300}{13} \mathrm{~N} \mathrm{~m} \end{aligned}$	M1 B1 E1	Moments expression. Accept $s \leftrightarrow c$. Correct trig ratios or lengths Shown	3
(iii)	We need $\frac{30 Q}{13}=340 \times 1.5$ $\text { so } Q=221$ Let friction be F and normal reaction R Resolve \rightarrow $221 \cos \theta-F=0$ so $F=85$ Resolve \uparrow $221 \sin \theta+R=340$ so $R=136$ $F<\mu R$ as not on point of sliding so $85<136 \mu$ so $\mu>\frac{5}{8}$	M1 E1 M1 A1 M1 A1 M1 A1 E1	Moments equn with all relevant forces Shown Accept \leq or $=$ Accept \leq. FT their F and R	
				9
				18
4 (i)	$\begin{aligned} & 4000\binom{\bar{x}}{\bar{y}}=4800\binom{30}{40}-800\binom{50}{20} \\ & \text { so } \bar{x}=26 \\ & \bar{y}=44 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \\ & \text { A1 } \end{aligned}$	Any complete method for c.m. Either one RHS term correct or one component of both RHS terms correct [SC 2 for correct \bar{y} seen if M 0]	4
(ii)	$\begin{aligned} & 250\binom{\bar{x}}{\bar{y}} \\ & =110\binom{0}{55}+40\binom{20}{0}+40\binom{40}{20}+20\binom{50}{40}+40\binom{60}{60} \end{aligned}$ $\begin{aligned} & \bar{x}=23.2 \\ & \bar{y}=40.2 \end{aligned}$	M1 B1 B1 E1 A1	Any complete method for c.m. Any 2 edges correct mass and c.m. or any 4 edges correct with mass and x or y c.m. coordinate correct. At most one consistent error	

(iii)	$\begin{aligned} & \text { Angle is } \arctan \left(\frac{23.2}{110-40.2}\right) \\ & =18.3856 \ldots \text { so } 18.4^{\circ} \text { (3 s. f.) } \end{aligned}$	B1 B1 M1 A1	Indicating c.m. vertically below Q Clearly identifying correct angle (may be implied) and lengths Award for $\arctan \left(\frac{b}{a}\right)$ where $b=23.2$ and $a=69.8$ or 40.2 or where $b=69.8$ or 40.2 and $a=23.2$. Allow use of their value for y only. cao	
(iv)	$\begin{aligned} & 10\binom{\bar{x}}{\bar{y}}=2 \times 1.5 \times\binom{ 26}{44}+7\binom{23.2}{40.2} \\ & \bar{x}=24.04 \text { so } 24.0 \text { (3 s.f.) } \\ & \bar{y}=41.34 \text { so } 41.3 \text { (3 s.f.) } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { F1 } \end{aligned}$	Combining the parts using masses Using both ends All correct cao FT their y values only.	5
				18

