Question 1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline (i) \& \begin{tabular}{c}
\(x\) \\
\hline\(y\) \\
\hline \(\operatorname{Rank} x\) \\
\hline \(\operatorname{Rank} y\) \\
\hline\(d\) \\
\hline\(d^{2}\) \\
\(\Sigma d^{2}=4\) \\
\(r_{s}=\) \\
\(=\)
\end{tabular} \& \begin{tabular}{|l}
6 \\
\hline 6 \\
\hline 8 \\
8 \\
\hline 0 \\
0
\end{tabular}
\[
-\frac{62}{n(n}
\] \& \begin{tabular}{|c|}
\hline 17 \\
\hline 13 \\
\hline 2 \\
\hline 2 \\
\hline 0 \\
\hline 0 \\
\hline
\end{tabular} \& \[
\begin{array}{c|}
\hline 9 \\
\hline 10 \\
\hline 7 \\
\hline 5 \\
\hline 2 \\
\hline 4 \\
\hline 1-\frac{6}{8} \\
\text { f.) }
\end{array}
\] \& \begin{tabular}{l}
\begin{tabular}{c|}
\hline 20 \\
\hline 11 \\
\hline 1 \\
\hline 4 \\
\hline-3 \\
\hline 9 \\
\hline
\end{tabular} \\
\(\times 48\) \\
x63 \\
allow
\end{tabular} \& \begin{tabular}{c}
13 \\
\hline 9 \\
\hline 5 \\
\hline 6 \\
\hline-1 \\
\hline 1 \\
\hline
\end{tabular} \& \begin{tabular}{c}
\\
15 \\
\hline 7 \\
3 \\
7 \\
\hline-4 \\
16
\end{tabular} \& \[
\begin{aligned}
\& \hline 11 \\
\& \hline 12 \\
\& \hline 6 \\
\& \hline 3 \\
\& \hline 3
\end{aligned}
\] \& \begin{tabular}{c}
14 \\
\hline 15 \\
\hline 4 \\
\hline 1 \\
\hline 3 \\
\hline 9
\end{tabular} \& \begin{tabular}{l}
M1 for attempt at ranking (allow all ranks reversed) \\
M1 for \(d^{2}\) \\
A1 CAO for \(\Sigma d^{2}\) \\
M1 for method for \(r_{s}\) \\
A1 f.t. for \(\left|r_{s}\right|<1\) NB No ranking scores zero
\end{tabular} \& 5 \\
\hline (ii) \& \begin{tabular}{l}
\(\mathrm{H}_{0}\) : no \\
\(\mathrm{H}_{1}\) : so populat \\
One tail \\
Since 0 reject H \\
i.e. con positive
\end{tabular} \& \begin{tabular}{l}
soci \\
pos \\
n \\
st \\
2 <
\end{tabular} \& \begin{tabular}{l}
ion ive ical .6429 \\
at the tion
\end{tabular} \& \begin{tabular}{l}
twee ocia \\
value ther \\
e is \(n\) etwe
\end{tabular} \& \begin{tabular}{l}
\(X\) an on b 5\% is in \\
t en \\
n the
\end{tabular} \& \begin{tabular}{l}
Y wee \\
level uffic \\
gh wo
\end{tabular} \& \begin{tabular}{l}
the \\
\(X\) a \\
0.6 \\
nt \\
viden dges
\end{tabular} \& \begin{tabular}{l}
pulat \\
\(Y\) in \\
29 \\
idenc \\
e to \\
scor
\end{tabular} \& \begin{tabular}{l}
ion the to \\
how .
\end{tabular} \& \begin{tabular}{l}
B1 for \(\mathrm{H}_{0}\) \\
B1 for \(\mathrm{H}_{1}\) \\
B1 for population SOI \\
NB \(\mathrm{H}_{0} \mathrm{H}_{1}\) not ito \(\rho\) \\
B1 for \(\pm 0.6429\) \\
M1 for sensible comparison with \\
c.v., provided that \(\left|r_{s}\right|<1\) \\
A1 for conclusion in context f.t. their \(r_{s}\) and sensible cv
\end{tabular} \& 3

3

\hline (iii) \& \multicolumn{9}{|l|}{| A bivariate Normal distribution is required. |
| :--- |
| Scatter diagram. |
| Suitable discussion |} \& | B1 |
| :--- |
| G1 labelled axes G1 correct points E1 E1 | \& 5

\hline \& \& \& \& \& \& \& \& \& \& TOTAL \& 16

\hline
\end{tabular}

Question 2			
(i)	Counts have a uniform average rate of occurrence All counts are independent	E1 E1	2
(ii)	Variance $=3.4$	B1	1
(iii)	(A) Either $\mathrm{P}(X=3)=0.5584-0.3397=0.2187$ Or $\mathrm{P}(X=3)=\mathrm{e}^{-3.4} \frac{3.4^{3}}{3!}=0.2186$ (B) Using tables: $\mathrm{P}(X \geq 3)=1-\mathrm{P}(X \leq 2)$ $=1-0.3397$ $=0.6603$	M1 for use of tables or calculation A1 M1 for 1- $\mathrm{P}(X \leq 2)$ M1 correct use of Poisson tables A1	2 3
(iv)	$\begin{aligned} & \lambda=12 \times 3.4=40.8 \\ & \mathrm{P}(X=40)=\mathrm{e}^{-40.8} \frac{40.8^{40}}{40!}=0.0625 \end{aligned}$	B1 for mean M1 for calculation A1	3
(v)	Mean no. per hour $=12 \times 3.4=40.8$ Using Normal approx. to the Poisson, $\begin{aligned} & X \sim \mathrm{~N}(40.8,40.8) \\ & \quad \mathrm{P}(X \geq 40)=\mathrm{P}\left(Z>\frac{39.5-40.8}{\sqrt{40.8}}\right) \\ & =\mathrm{P}(Z>-0.2035)=\Phi(0.2035) \\ & =0.5806 \end{aligned}$	B1 for Normal approx. B1 for correct parameters (SOI) B1 for correct continuity corr. M1 for probability using correct tail A1 CAO (3 s.f.)	5
(vi)	Overall mean $=4.8$ $\begin{aligned} & \mathrm{P}(X \geq 8)=1-\mathrm{P}(X \leq 7) \\ & \quad=1-0.8867=0.1133 \end{aligned}$	B1 for 4.8 M1 A1	3
		TOTAL	19

Question 3

\begin{tabular}{|c|c|c|c|}
\hline (i) \& \begin{tabular}{l}
(A)
\[
\begin{aligned}
\& \mathrm{P}(X<65)= \\
\& \mathrm{P}\left(Z<\frac{65-63}{5.2}\right) \\
\& \quad=\mathrm{P}(Z<0.3846) \\
\& \quad=\Phi(0.3846)=0.6497
\end{aligned}
\] \\
(B)
\[
\begin{aligned}
\& \mathrm{P}(60<X<65)=\mathrm{P}\left(\frac{60-63}{5.2}<\mathrm{Z}<\frac{65-63}{5.2}\right) \\
\& =\mathrm{P}(-0.5769<Z<0.3846) \\
\& =\Phi(0.3846)-(1-\Phi(0.5769)) \\
\& =0.6497-(1-0.7181) \\
\& =0.3678
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 for standardizing \\
M1 for structure \\
A1 CAO (min 3 s.f.), \\
NB When a candidate's answers \\
suggest that (s)he appears to have \\
neglected to use the difference column \\
of the Normal distribution tables \\
penalise the first occurrence only \\
M1 for standardizing both \\
M1 for correct structure \\
A1 CAO 3s.f.
\end{tabular} \& 3

3

\hline (ii) \& $$
\begin{aligned}
& \text { P(All } 5 \text { between } 60 \text { and 65) } \\
& =0.3678^{5}=0.00673
\end{aligned}
$$ \& M1 A1 FT (min 2sf) \& 2

\hline (iii) \& From tables $\Phi^{-1}(0.95)=1.645$

\[
$$
\begin{aligned}
& \frac{k-63}{5.2}=-1.645 \\
& x=63-5.2 \times 1.645=54.45 \mathrm{mins}
\end{aligned}
$$

\] \& | B1 for ± 1.645 seen M1 for correct equation in k |
| :--- |
| A1 CAO | \& 3

\hline (iv) \& | $\mathrm{H}_{0}: \mu=63$ minutes; $\mathrm{H}_{1}: \mu<63$ minutes. Where μ denotes the population mean time on the new course. $\begin{aligned} \text { Test statistic } & =\frac{61.7-63}{5.2 / \sqrt{15}}=\frac{-1.3}{1.3426} \\ & =-0.968 \end{aligned}$ |
| :--- |
| 5% level 1 tailed critical value of $z=1.645$ $-0.968>-1.645$ so not significant. |
| There is not sufficient evidence to reject H_{0} |
| There is insufficient evidence to conclude that the new course results in lower times. | \& | B1 for use of 63 |
| :--- |
| B1 for both correct |
| B1 for definition of μ |
| M1 must include $\sqrt{ } 15$ |
| A1 |
| B1 for ± 1.645 |
| M1 for sensible comparison leading to a conclusion |
| A1 FT for correct conclusion in words in context | \& 3

\hline \& \& \& 19

\hline
\end{tabular}

Question 4

(i)	H_{0} : no association between category of runner and type of running; H_{1} : some association between category of runner and type of running;				B1	1
					M1 A2 for expected values (to 2 dp) (allow A1 for at least one row or column correct)	
	EXPECTED	Junior	Senior	Veteran		
	Track	5.13	7.84	6.03		
	Road	6.48	9.90	7.62		
	Both	5.40	8.25	6.35		
	CONTRIBUTN	Junior	Senior	Veteran	M1 for valid attempt at (O-E) ${ }^{2} / \mathrm{E}$ A1 for all correct NB These M1A1 marks cannot be implied by a correct final value of X	7
	Track	2.9257	0.0032	2.6949		
	Road	0.9468	0.3663	2.5190		
	Both	0.3615	0.3694	0.0192		
	$X^{2}=10.21$				M1 for summation A1 for X^{2}	
	Refer to $X_{4}{ }^{2}$				B1 for 4 deg of f	
	Critical value at 5% level $=9.488$				B1 CAO for cv	
	Result is significant				B1 FT their 'sensible' $\begin{aligned} & \mathrm{D} 1 \\ & X^{2} \end{aligned}$	
	There is evid association bet running. NB if $\mathrm{H}_{0} \mathrm{H}_{1}$ revers first B1or final E1	ce to su en categ or 'correla	st that the of runner mentioned,	is some and type of not award	E1 must be consistent with their X^{2}	4
(ii)	- Juniors appear be track runners more often than expected and road less often than expected. - Seniors tend to be as expected ín all three categories of running.				E1 E1	
					E1 E1	
	- Veterans tend to be road runners more than expected and track runners less than expected.				E1 E1	6
					TOTAL	18

