

GCE

Physics A

Unit **H556/02**: Exploring physics

Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

Annotations available in RM Assessor

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
LI	Level 1
L2	Level 2
L3	Level 3
TE	Transcription error
NBOD	Benefit of doubt not given
POT	Power of 10 error
^	Omission mark
SF	Error in number of significant figures
<u> </u>	Correct response
?	Wrong physics or equation

H556/02 Mark Scheme June 2017

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning			
1	alternative and acceptable answers for the same marking point			
reject	Answers which are not worthy of credit			
not	Answers which are not worthy of credit			
ignore	Statements which are irrelevant			
allow	Answers that can be accepted			
()	Words which are not essential to gain credit			
	Underlined words must be present in answer to score a mark			
ECF	Error carried forward			
AW	Alternative wording			
ORA	Or reverse argument			

MARKING INSTRUCTIONS

Generic version as supplied by OCR Sciences

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are <u>method</u> marks upon which **A**-marks (accuracy marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored.

C marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given.

A marks: These are accuracy or <u>answer</u> marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Note about significant figures:

If the data given in a question is to 2 sf, then allow to 2 or <u>more</u> significant figures. If an answer is given to fewer than 2 sf, then penalise once only in the <u>entire</u> paper. Any exception to this rule will be mentioned in the Additional Guidance.

SECTION A

Question	Answer	Marks	Guidance
1	В	1	
2	С	1	
3	D	1	
4	В	1	
5	A	1	
6	С	1	
7	A	1	
8	D	1	
9	D	1	
10	С	1	
11	D	1	
12	A	1	
13	D	1	
14	В	1	
15	В	1	
	Total	15	

SECTION B

	Quest	tion	Answer	Marks	Guidance
16	(a)		(When two or more waves meet at a point in space) the resultant (displacement) is equal to the (vector) sum of the individual <u>displacements</u> of waves (meeting at a point)	B1	Allow total / Σ / net for resultant Not amplitude for displacement
	(b)	(i)	Clear evidence of at least two fringe separations used to determine x and x in the range 7.0 to 9.0 mm $\lambda = \frac{0.25 \times 10^{-3} \times 8 \times 10^{-3}}{4.25} \qquad \text{(Allow any subject)}$ $\lambda = 4.7 \times 10^{-7} \text{ (m)}$	B1 C1 A1	Allow ecf for incorrect value of x
		(ii)	Red light has longer wavelength / λ and separation between fringes increases (AW) Separation between fringes justified in terms of $x \propto \lambda$ or $x = \lambda D/a$, D and a are constants	M1	Allow other acceptable labels for <i>D</i> and <i>a</i>
			Total	6	

	Quest	ion	Answer	Marks	Guidance
17	(a)		Any one from: current, temperature, light intensity and amount of substance / matter	B1	Not: ampere, kelvin, candela and mole Not correct quantity with its unit, e.g. current in A or current (A)
	(b)	(i)	$R = \frac{\rho L}{A}$ and $A = \pi \left(\frac{d}{2}\right)^2$ $R_X = \frac{4\rho L}{\pi d^2}$ and $R_Y = \frac{8\rho L}{\pi d^2}$	M1	
			Clear steps leading to $R = \frac{12\rho L}{\pi d^2}$	A 1	
		(ii)1	Ruler / tape measure (for L) and micrometer (for d)	B1	Allow (vernier / digital) calipers or travelling microscope for micrometer
		(ii)2	$R = 2.3(4) (\Omega)$	C1	Allow other correct methods for getting 2.3 \pm 0.1 (Ω)
			$\frac{0.1}{9.5}$ or $2 \times \frac{0.003}{0.270}$	C1	Allow 2 or more sf for this C1 mark Note 0.0105 or 1.05% or 0.0222 or 2.22% scores this mark, allow 2sf or more
			$\frac{0.1}{9.5} + 2 \times \frac{0.003}{0.270}$ or 0.0327 or 3.27%	C1	mark, allow 251 of more
			absolute uncertainty in $R = 0.0327 \times 2.34 = 0.077$		
			$R = 2.3 \pm 0.1 \; (\Omega)$	A 1	Allow : 2.34 ± 0.08 (Ω) Note use of $R_{\rm X}$ or $R_{\rm Y}$ instead of R can score the second and third C1 marks only
		(ii)3	(The actual) R is large(r) because (the actual) d is small(er) or (the actual) A is small(er) or $R \propto 1/d^2$	B1	Allow : The <u>calculated</u> R is small(er) because (the measured) A is large(r) or $R \propto 1/d^2$
			Total	9	

	Quest	ion	Answer	Marks	Guidance
18	(a)	(i)	Resistance of parallel combination = 40 (Ω) $I = \frac{4.2-1.5}{40+33}$ $I = 0.037 \text{ (A)}$	C1 C1 A1	Allow $(1/60 + 1/120)^{-1}$ Allow 2 marks for $I = \frac{4.2 + 1.5}{40 + 33} = 0.078 \text{ (A)}$
		(ii)	Any two from: The current decreases up to 1.5 V The current is zero at 1.5 V The current changes direction / is negative when < 1.5 V The current increases below 1.5 V	B1×2	Allow 'current is zero when the e.m.f.s are the same'

Level 3 (5–6 marks) Clear description including a reasonable estimate of r and clear limitations There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Some description with an attempt to estimate r and some limitations There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1–2 marks)	B1×6	Use level of response annotations in RM Assessor, e.g. L2 for 4 marks, L2^ for 3 marks, etc. Indicative scientific points may include: Description and estimation Correct circuit with (variable) resistor, ammeter and
Clear description including a reasonable estimate of <i>r</i> and clear limitations There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Some description with an attempt to estimate <i>r</i> and some limitations There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence.	B1×6	Description and estimation Correct circuit with (variable) resistor, ammeter and
Limited description There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit. Tota	11	 Voltmeter Correct symbols used for all the components R changed to get different values for P R = V/I (using ammeter and voltmeter readings) or R measured directly using an ohmmeter with the variable resistor isolated from the circuit or R read directly from a resistance box Power calculated using P = V²/R or P = VI or P = I²R The value of r is between 1.0 to 3.0 Ω A smooth curve drawn on Fig. 18.2 (to determine r) A better approximation from sketched graph or r is between 1.5 and 2.7 Ω Any attempt at using E = V + Ir, with or without the power equation(s) to determine r - even if the value is incorrect Limitations 'More data' required Data point necessary at R = 2.0 Ω / More data (points) needed between 1 to 3 Ω No evidence of averaging / Error bars necessary (for both P and R values)

	Ques	tion	Answer	Marks	Guidance
19	(a)		Photon(s) mentioned	B1	
			One-to-one interaction between photons and electrons	B1	Allow 'photon absorbed by an electron' Allow: collide etc. for interaction
			Energy of photon is independent of intensity / intensity is to do with <u>rate</u> (of photons / photoelectric emission) / photon energy depends on frequency / energy of photon depends on wavelength / photon energy ∞ frequency / photon energy ∞ 1/ λ	B1	Allow $E = hf$ or $E = hc/\lambda$
			energy of uv photon(s) > work function (of zinc) / frequency of uv > threshold frequency	B1	Allow energy of light photon(s) < work function (of zinc) / frequency of light < threshold frequency Allow \geq instead of > here Not $f > f_0$
	(b)		$\phi = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{2.9 \times 10^{-7}} \text{or} 6.86 \times 10^{-19} \text{ (J)}$	C1	
			$E = 5.1 \times 1.60 \times 10^{-19}$ or 8.16×10^{-19} (J)	C1	Note : Using 5.1 and not 8.16×10^{-19} cannot score this mark or the next mark
			max kinetic energy = $(8.16 - 6.86) \times 10^{-19}$		
			max kinetic energy = 1.3×10^{-19} (J)	A 1	Allow 2 marks for 0.81 eV
	(c)		Any three from: The electrons are repelled by C / electrons travel against the electric field (AW) The electrons are emitted with a 'range' of speed / velocity / kinetic energy (AW) As V increases the slow(er) electrons do not reach C and hence I decreases	B1×3	Note 'range' can be implied by 'highest' or 'lowest'
			maximum KE in the range 2.1 \underline{eV} to 2.2 \underline{eV} or 3.36 \times 10 ⁻¹⁹ \underline{J} to 3.52 \times 10 ⁻¹⁹ \underline{J}		Allow 'find p.d. when current is (just) zero, and then $KE = e \times V$
			Total	10	

Q	uestic	on	Answer	Marks	Guidance
20	(a)		Correct pattern	B1	Note : At least five field lines must be drawn and of these, two must be perpendicular (by eye) to the surface of the sphere and plate
			Correct direction of the field	B1	Note: This may be shown on just one line
	(b)		(Electric potential) is the <u>work</u> done per (unit) charge in bringing a <u>positive</u> charge from infinity (to the point).	B1	Allow: work done / energy required to bring a unit positive charge from infinity (to the point)
	(c)	(i)	$V = Q/4\pi\varepsilon_0 r$ (Allow any subject)	C1	Note using $E = V/d$ with $E = Q/4\pi\epsilon_0 l^2$ is wrong physics and hence scores zero
			$Q = 4\pi \times 8.85 \times 10^{-12} \times 0.015 \times 5000$	C1	Note if the value of ε_0 is not given here, it could be implied in the correct 3sf answer Allow any subject here if the answer is given to more than 2sf Allow the use of $1/4\pi\varepsilon_0 = 9\times 10^9$
			$Q = 8.3(4) \times 10^{-9} (C)$	Α0	
		(ii)1	(electric force =) $1.7 \times 10^{-2} \times \text{tan4.0}$ (Allow any subject)	M1	Not 1.7 × 10 ⁻² sin4 or 1.7 × 10 ⁻² cos86
			(electric force = $1.19 \times 10^{-3} \text{ N}$)	(A0)	Allow $1.7 \times 10^{-2} \times \sin 4/\cos 4$
		(ii)2	$E = 1.2 \times 10^{-3}/8.3(4) \times 10^{-9}$	C1	
			$E = 1.4 \times 10^5 \text{ (N C}^{-1)}$	A 1	Allow 2 marks for 1.45×10^5 (N C ⁻¹), 8.3×10^{-9} used Allow 2 marks for 1.43×10^5 (N C ⁻¹), 1.19×10^{-3} (N) used
			Total	8	

	Quest	tion	Answer	Marks	Guidance
21	(a)		$\varepsilon = 7.2 \times 10^{-12} \times 1.2 \times 10^{-3} / 4.0 \times 10^{-4}$	C1	Allow any subject
			permittivity = $2.2 \times 10^{-11} \text{ (F m}^{-1)}$	A 1	Allow ε_0 instead of ε Note answer to 3 sf is 2.16 × 10 ⁻¹¹ (F m ⁻¹) Allow 1 mark for bald 2.4; relative permittivity calculated
	(b)	(i)	capacitance of two capacitors in series = 500 (μF)	C1	
			C = 1000 + 500 $C = 1500 (\mu F)$	A 1	
		/ii\	$V = 1.5 \times e^{-12/15}$	C1	Possible oof from (i)
		(ii)	$V = 1.5 \times e$	CI	Possible ecf from (i)
			V = 0.67 (V)	A 1	Allow 1 mark for 0.83 V, $V = 1.5[1 - e^{-12/15}]$ used
			Total	6	

Use level of response annotate e.g. L2 for 4 marks, L2^ for 3 Ignore incorrect references to accuracy Level 3 (5–6 marks) Clear evaluation of Fig. 22.1 and clear analysis Use level of response annotate e.g. L2 for 4 marks, L2^ for 3 Ignore incorrect references to accuracy B1×6 Indicative scientific points	
There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Some evaluation of Fig. 22.1 and some analysis There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1–2 marks) Limited evaluation of Fig. 22.1 or limited analysis There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks Evaluation of Fig. 22.1 Comment on the line The straight line misses of point ringed or indicated Too few data points plott The triangle used to calc small Some plots should have No error bars for current No origin shown (AW) Evaluation of analysis The value of B is close to	s may include: s one error bar / anomalous d tted culate the gradient is (too) e been repeated / checked t or current) to the accepted value

Que	stion	Answer	Marks	Guidance
(b) (i)	There is a changing / fluctuating (magnetic) field / flux (linkage)	М1	Note: This changing flux can be anywhere Allow 'the direction of the field oscillates'
		(magnetic) field / flux (linkage) in core and secondary (coil)	A 1	Allow 'the core helps to link the flux to the secondary coil'
		Statement of Faraday's law: e.m.f. (induced) ∞ <u>rate</u> of change of (magnetic) flux <u>linkage</u>	B1	Allow 'equal to / =' Ignore 'cutting of flux' Not just $E = (-)\Delta(N\phi)/\Delta t$
	(ii)1	$(I_S =) 24/12$ or 2.0 (A)	C1	
		$(I_P =) \frac{20}{400} \times 2.0$ (current in primary =) 0.10 (A)	A 1	Allow 1 sf answer
		or		
		$(V_{\rm P} =) 12 \times 20$ or 240 (V) $(I_{\rm P} =) \frac{24}{240}$	C1	
		(current in primary =) 0.10 (A)	A 1	Allow 1 sf answer
	(ii)2	Idea of changing / increasing (magnetic) field / flux / current (in primary) at the start	B1	Note: Any labels used must be clearly defined
		Eventually <u>current</u> and <u>flux</u> (linkage) are constant, therefore no <u>e.m.f</u> .	B1	
		Total	13	

Qı	Question		Answer	Marks	Guidance
23	(a)		Any two from: It acts between quarks / nucleons / hadrons 'Short-range' force	B1×2	Allow any correctly named particle
			Repulsive below (about) 0.5 fm Attractive up to (about) 3 fm		Allow any value between 0.5 fm and 5 fm
	(b)	(i)	proton = u u d or neutron = u d d	B1	
		(ii)	$d \rightarrow u + {0 \atop -1}e$	M1	Allow the equation expressed in words Allow udd \rightarrow uud + $^0_{-1}$ e Allow $^0_{-1}\beta$ Not e for electron
			$+$ $\stackrel{-}{ u}_{(e)}$	A 1	Allow this mark if electron written as e ⁻ or β ⁻
	(c)		mass (of nucleus) ∞ A	B1	Allow mass = Am , mass = Au , etc.
			volume (of nucleus) ∞ radius ³ ∞ A and clears steps using $\rho = m/V$ to show density is (about) the same	B1	Allow r or R for radius Allow any sensible constant in front of the r^3
			Total	7	

Question		Answer		Guidance
24	(a)	² ₁ H has two nucleons	B1	
		binding energy per nucleon = 1.1 MeV (per nucleon)	B1	Allow $1.76 \times 10^{-13} $ <u>J (per nucleon)</u>
	(b)	The <u>protons</u> / <u>nuclei</u> repel each other	B1	Not atoms / particles
		(At high temperature) particles have more <u>KE</u> and hence can get <u>close</u> (enough to fuse)	B1	Allow 'enough KE to get close' Not atoms or ions
	(c)	$E = hc/\lambda$ and $E = mc^2$ or $E = 2 \times mc^2$	C1	Allow $hc/\lambda = 2mc^2$ with or without the factor of 2
		$\lambda = \frac{6.63 \times 10^{-34}}{2 \times 9.11 \times 10^{-31} \times 3.0 \times 10^{8}}$	C1	Note : The mass must be $2m_{\rm e}$ to score this and the next mark
		maximum wavelength = 1.2×10^{-12} (m)	A1	Not de Broglie equation $\lambda = h/mv$ with speed of c ; which gives 2.4×10^{-12} (m) Allow 2 marks for 6.6×10^{-16} (m); mass of neutron or proton used instead
				Allow the following marks for 1.02 MeV recalled: $E = 1.63 \times 10^{-13}$ (J)
				$\lambda = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{1.63 \times 10^{-13}}$ C1
				maximum wavelength =1.2 \times 10 ⁻¹² (m) A1
		Total	7	

Qı	Question		Answer	Marks	Guidance
25	(a)		The patient is surrounded by (gamma) detectors or Increased activity is where F-18 accumulates (AW)	B1	Allow 'diametrically opposite detectors'
			The positrons (from the F-18) <u>annihilate</u> electrons (inside the patient)	B1	
			Each annihilation produces two gamma photons travelling in opposite directions	B1	Not gamma rays / radiation
			The arrival times are used to locate position (of increased activity)	B1	Allow 'delay time'
	(b)		$\lambda = \ln 2/110$ or $6.3 \times 10^{-3} \text{ (min}^{-1}\text{)}$	C1	Allow $1.05 \times 10^{-4} (s^{-1})$
			$0.30 = e^{-6.3 \times 10^{-3} t}$		This is the same as $0.30 = e^{-1.05 \times 10^{-4}t}$
			$t = \frac{\ln(0.30)}{-6.3 \times 10^{-3}}$	C1	Note : This mark is for a In expression (any subject)
			t = 190 (minutes)	A 1	Allow 2 marks for 1.15×10^4 (s) as the final answer
	(c)		Any sensible suggestion, e.g. 'post-code' lottery, some patients may not get the treatment because of where they live, longer waiting lists, etc.	B1	
			Total	8	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

