AQA Qualifications

A-LEVEL
 Chemistry

CHEM5 Energetics, Redox and Inorganic Chemistry
Mark scheme

2420
June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Question	Marking guidance	Mark	Comments
1 ai	Covalent	1	Ignore simple / molecular Do not allow macromolecular/giant covalent/dative/dipoledipole/Hydrogen bonds Ignore VdW
1aii	$\mathrm{P} /$ phosphorus / P_{4}	1	
1aiii	$\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$	1	Mark independently of 1aii Accept multiples/fractions Ignore state symbols Allow ions on the RHS $\left(\rightarrow 12 \mathrm{H}^{+}+4 \mathrm{PO}_{4}{ }^{3}\right)$ Allow correct equations from $\mathrm{P}_{4} \mathrm{O}_{6}, \mathrm{P}_{2} \mathrm{O}_{3}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$ $\begin{aligned} & \mathrm{P}_{4} \mathrm{O}_{6}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{3} \\ & \mathrm{P}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{3} \\ & \mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4} \\ & \hline \end{aligned}$
1 bi	Ionic	1	Ignore giant / lattice
1bii	Na / Sodium	1	
1biii	$2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Na}^{+}+2 \mathrm{OH}^{-}+\mathrm{H}_{2}$	1	Allow equation to form 2 NaOH Accept multiples/fractions Ignore state symbols

1biv	$\mathrm{Na}_{2} \mathrm{O}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$	1	Accept multiples/fractions Ignore state symbols Allow ions, but do not allow H^{+}only for the acid.
1ci	Ionic	1	Allow ionic and covalent / ionic with covalent character
1cii	$\mathrm{Al}_{2} \mathrm{O}_{3}$	1	Ignore state symbols
1ciii	reacts with acids and bases	1	Allow reacts with acids and alkalis / acts as both an acid and a base / shows acidic and basic properties
1 civ	$\begin{aligned} & \mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} \rightarrow 2 \mathrm{Al}^{3+}+6 \mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Al}^{3+}+3 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Na}^{+}+2\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-} \\ & \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{OH}^{-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-} \\ & \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH}^{+}+7 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Na}^{+}+2\left[\mathrm{Al}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-} \\ & \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{OH}^{-}+7 \mathrm{H}_{2} \mathrm{O} \rightarrow 2\left[\mathrm{Al}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-} \end{aligned}$	1 1	Allow equation to form $2 \mathrm{AlCl}_{3}$ (but not $\mathrm{Al}_{2} \mathrm{Cl}_{6}$) Allow equations with other acids Allow equations to form $2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]$ or $2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ Allow equations with other alkalis Allow correct equations which form $\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}$ Allow equations to form $\left[\mathrm{Al}(\mathrm{OH})_{x}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6-x}\right]^{3-x}$ etc. Ignore state symbols

Question	Marking guidance	Mark	Comments
2ai	$\frac{2 \mathrm{~K}^{+}(\mathrm{g})+2 \mathrm{e}^{-}+{ }^{1 / 2 \mathrm{O}_{2}(\mathrm{~g})} \mathrm{M} 3{ }^{2 \mathrm{~K}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})} \mathrm{M} 2}{2 \mathrm{~K}(\mathrm{~s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \text { only } \mathrm{M} 1}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Mark each line independently, but follow one route only. Must have state symbols, but ignore s.s. on electrons. Penalise lack of state symbols each time. Alternative answers $\begin{aligned} & 2 \mathrm{~K}(\mathrm{~g})+\mathrm{O}(\mathrm{~g}) \quad \mathrm{M} 3 \\ & 2 \mathrm{~K}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{M} 2 \\ & 2 \mathrm{~K}(\mathrm{~s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \text { only } \mathrm{M} 1 \end{aligned}$ or $2 \mathrm{~K}(\mathrm{~g})+\mathrm{O}(\mathrm{~g}) \mathrm{M} 3$ $2 \mathrm{~K}(\mathrm{~s})+\mathrm{O}(\mathrm{~g}) \quad \mathrm{M} 2$ $2 \mathrm{~K}(\mathrm{~s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$ only M 1

2aii	$\begin{aligned} & (2 \times 90)+248+(2 \times 418)-142+844=-362+\text { Lattice } \\ & \text { enthalpy of dissociation } \\ & \text { enthalpy of lattice dissociation }=(+) 2328\left(\mathrm{kJmol}^{-1}\right) \end{aligned}$	3	M1 for $(\underline{2 \times 90})$ and ($2 \times 418)$ M2 for a correct expression (either in numbers or with words/formulae) M3 for answer $2328 \mathrm{kJmol}^{-1}$ scores 3 marks. Allow answers given to 3sf. Answer of 1820, scores zero marks as two errors in calculation. Answers of 2238, 1910, 2204 max = 1 mark only since one chemical error in calculation (incorrect/missing factor of 2) Allow 1 mark for answer of -2328 $\left(\mathrm{kJmol}^{-1}\right)$ Penalise incorrect units by one mark.

2 b	$\mathrm{~K}^{+}$(ion)/K ion is bigger (than Na^{+}ion)	1	K^{+}has lower charge density $/ \mathrm{Na}^{+}$has higher charge density. lgnore K atom is bigger
(Electrostatic) attraction between (oppositely charged) ions is weaker	1	If attraction is between incorrect ions, then lose M2 Attraction between molecules/atoms or mention of intermolecular forces $C E=0 / 2$ Allow converse for $\mathrm{Na}_{2} \mathrm{O}$ if explicit	

Question	Marking guidance	Mark	Comments
3a	$\mathrm{MgCl}_{2}(\mathrm{~s}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$	1	State symbols essential Do not allow this equation with $\mathrm{H}_{2} \mathrm{O}$ on the LHS Ignore + aq on the LHS Allow $\mathrm{H}_{2} \mathrm{O}$ written over the arrow / allow equation written as an equilibrium, Allow correct equations to form $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ ions.
3b	$\begin{aligned} & \Delta H_{\text {soln }} \mathrm{MgCl}_{2}=\mathrm{LE}+\left(\Delta H_{\text {hyd }}{ }^{2+}\right)+2\left(\Delta \mathrm{H}_{\text {hydCl }}\right) \\ & \Delta H_{\text {soln }} \mathrm{MgCl}_{2}=2493-1920+(2 \times-364) \\ & =-155\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	1 1	M1 for expression in words or with correct numbers Ignore units, but penalise incorrect units
3c	M1: Solubility decreases (as temp increases) M2: the enthalpy of solution is exothermic / reaction is exothermic / backwards reaction is endothermic M3: (According to Le Chatelier) the equilibrium moves to absorb heat/reduce temperature/oppose the increase in temperature (in the endothermic direction)	1 1 1	If M 1 is incorrect then $\mathrm{CE}=0 / 3$ If answer to 3 b is $\mathrm{a}+\mathrm{ve}$ value, allow: M1: Solubility increases (as temp increases) M2: Enthalpy of solution is endothermic etc. M3: (According to Le Chatelier) the equilibrium moves to absorb heat/reduce the temperature/oppose the increase in temperature (in the endothermic direction)

\begin{tabular}{|c|c|c|c|}
\hline Question \& Marking guidance \& Mark \& Comments \\
\hline 4ai \& \(\mathrm{Zn}^{2+}\) \& 1 \& \begin{tabular}{l}
\[
\mathrm{Zn}^{2+}(\mathrm{aq})
\] \\
Apply List
\end{tabular} \\
\hline 4aii \& \begin{tabular}{l}
\[
298 \mathrm{~K} / 25^{\circ} \mathrm{C}
\] \\
(solutions at) unit concentration \(/ 1 \mathrm{~mol} \mathrm{dm}^{-3}\left(\mathrm{of} \mathrm{Zn}^{2+}\right.\))
\end{tabular} \& \[
1
\]
\[
1
\] \& Ignore pressure Ignore standard conditions Ignore state symbols Ignore references to S.H.E \\
\hline 4b \& Identifying it is the \(\mathrm{Zn} / \mathrm{Zn}^{2+}\) and \(\mathrm{Co}^{2+} / \mathrm{Co}\) half cells
\[
\mathrm{Zn}\left|\mathrm{Zn}^{2+}\right|\left|\mathrm{Co}^{2+}\right| \mathrm{Co}
\]
\[
\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{(-)}
\] \& 1
1

1 \& | correct order with phase boundaries and salt bridge correct, no Pt |
| :--- |
| If this is correct it scores M1 and M2 |
| Allow double dashed line for salt bridge |
| Extra phase boundaries loses M2 |
| Ignore state symbols |
| M3 independent |
| Allow -2e on LHS |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 4c \& \begin{tabular}{l}
\(\mathrm{Co}^{3+}\)
\[
2 \mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{Co}^{2+}(\mathrm{aq})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}(\mathrm{aq})
\] \\
Oxygen \(/ \mathrm{O}_{2}\)
\end{tabular} \& 1
1
1 \& \begin{tabular}{l}
Mark independently. \\
Ignore state symbols allow multiples \\
Allow \(1 / 2 \mathrm{O}_{2}\)
\end{tabular} \\
\hline 4d \& \begin{tabular}{l}
\(E^{\ominus}\left(\mathrm{O}_{2}\left(\mid \mathrm{H}_{2} \mathrm{O}\right)\right)\) electrode \(<E^{\ominus}\left(\mathrm{Au}^{+}(\mid \mathrm{Au})\right)\) \\
OR \(E^{\ominus}\left(\mathrm{Au}^{+}(\mid \mathrm{Au})\right)>E^{\ominus}\left(\mathrm{O}_{2}\left(\mid \mathrm{H}_{2} \mathrm{O}\right)\right)\) \\
OR the \(E^{\ominus}\left(\mathrm{Au}^{+} \mid \mathrm{Au}\right)\) electrode potential is more positive than the \(E^{0}\left(\mathrm{O}_{2} \mid \mathrm{H}_{2} \mathrm{O}\right)\) electrode \\
OR The emf (for the reaction of Au and oxygen) is -0.45 V (and therefore not spontaneous) \\
so oxygen is unable to oxidise gold
\end{tabular} \& 1

1 \& | Mark independently |
| :--- |
| Ignore references to water |
| Allow gold cannot reduce oxygen |

\hline
\end{tabular}

Question	Marking guidance	Mark	Comments
5 ai	M1 Positive electrode $\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{(-)} \rightarrow 4 \mathrm{OH}^{-}$ M2 Negative electrode $\mathrm{H}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{(-)}$ $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Allow multiples, ignore state symbols If equations both correct but at the wrong electrodes allow 1 mark Mark independently Must be this way round
5aii	Increase (emf) $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ will move to the right or overall equation moves to the right	1 1	If decrease/no change then $\mathrm{CE}=0 / 2$; if blank then mark on Allow $\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}$will move to the right / oxygen half equation moves to the RHS / $E^{\circ} \mathrm{O}_{2} \mid \mathrm{OH}^{-}$half cell moves to the right
$5 b$	e.m.f $/ \mathrm{V} \underbrace{}_{\text {time } / \mathrm{min}}$	1	Must start at y -axis
5ci	Unchanged	1	

5cii	Water is the only product $/$ fuel cell does not give out pollutants such as NO_{x} or CO_{2} or SO_{2} or C or CO or $\mathrm{C}_{x} \mathrm{H}_{y}$ or unburnt hydrocarbons	1	Not fuel cell does not give out pollutants unless pollutant stated
5 d	$\underline{\mathrm{CO}_{2}} \underline{\text { is released because fossil fuels are burned to produce }}$electricity to generate hydrogen OR $\underline{\mathrm{CO}_{2}} \underline{\text { is released when methane reacts with steam to produce }}$ $\underline{\text { hydrogen }}$	Allow CO_{2} is released to produce the hydrogen	

Question	Marking guidance	Mark	Comments
6a	$\Delta H^{\ominus}=\Sigma \Delta H_{f}^{\ominus}$ products $-\Sigma \Delta H_{f}^{\ominus}$ reactants or $(2 \times-395)-(2 \times-297)$ $=-196\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	1 1	Penalise incorrect units, ignore missing units
6 b	$\begin{aligned} & \Delta S^{\ominus}=\Sigma S^{\ominus} \text { products }-\Sigma S^{\ominus} \text { reactants } \\ & =(2 \times 256)-205-(2 \times 248) \\ & =-189 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \end{aligned}$	1 1	Allow - $0.189 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ Units must be given and must match value
6c	causes an increase in order / a decrease in disorder	1	Allow products more ordered / products less disordered If answer to 6 b is +ve, allow products are less ordered/ causes an increase in disorder / causes a decrease in order

6d	$\begin{aligned} & \Delta G^{\ominus}=\Delta H^{\ominus}-T \Delta S^{\ominus} \\ & =-196-323(-189 / 1000) \\ & =-134.9 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	1 1 1	Do not insist on standard state symbol If conversion of T or $\Delta \mathrm{S}$ incorrect, then can only score M1 Must have correct units. Allow answers in $\mathrm{J} \mathrm{mol}^{-1}$ $-135 \mathrm{~kJ} \mathrm{~mol}^{-1}$ If both alternative values used then -169(.3) $\mathrm{kJ} \mathrm{mol}^{-1}$. Allow alternative ΔH and/or alternative ΔS in calculation
6 e	Feasible because $\Delta \mathrm{G}$ is negative	1	Allow mark if a correct deduction from answer to 6d Both a reference to feasibility and to $\Delta \mathrm{G}$ needed
6 fi	(The catalyst is in) a different state or phase (from the reactants)	1	
6fii	$\begin{aligned} & \mathrm{SO}_{2}+\mathrm{V}_{2} \mathrm{O}_{5} \rightarrow \mathrm{SO}_{3}+\mathrm{V}_{2} \mathrm{O}_{4} \\ & \frac{1}{2} \mathrm{O}_{2}+\mathrm{V}_{2} \mathrm{O}_{4} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{5} \end{aligned}$	1 1	allow $2 \mathrm{VO}_{2}$ instead of $\mathrm{V}_{2} \mathrm{O}_{4}$ allow multiples Must have equations in this order.
6fiii	Surface area is increased	1	
6 fiv	So that the catalyst is not poisoned	1	Allow correct reference to the blocking active sites

Question	Marking guidance	Mark	Comments
7 a	$\mathrm{CrCl}_{3}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{Cl}^{-}$	1	Ignore state symbols
7b	M1 $\quad \mathbf{P}=\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ M2 NaOH (not excess) or NH_{3} or names $\begin{aligned} & \mathrm{M} 3\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]+3 \mathrm{H}_{2} \mathrm{O} \\ & \quad\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]+3 \mathrm{NH}_{4}^{+} \end{aligned}$	3	Ignore state symbols Penalise charges on ligands in complex ion formulae Do not transfer M1 from equation Allow KOH do not allow OH^{-}/excess NaOH but mark on Equations must match reagent but if NH_{3} then also allow two equations $\begin{aligned} & \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \\ & {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]+3 \mathrm{H}_{2} \mathrm{O}} \end{aligned}$ Do not allow $\mathrm{Cr}(\mathrm{OH})_{3}$ as identity of P , or in equation

7c	```M1 \(\quad \mathbf{Q}=\mathrm{CO}_{2}\) M2 \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) or \(\mathrm{NaHCO}_{3}\) or \(\mathrm{K}_{2} \mathrm{CO}_{3}\) M3 \(2\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{CO}_{3}{ }^{2-} \rightarrow 2\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}\)```	3	Ignore state symbols Penalise charges on ligands in complex ion formulae Do not allow incorrect formulae or $\mathrm{CO}_{3}{ }^{2-}$ but mark on. Do not allow insoluble carbonates or $\mathrm{H}_{2} \mathrm{CO}_{3}$ but mark on. Do not allow equations that give $\mathrm{Cr}(\mathrm{OH})_{3}$ allow $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{HCO}_{3}^{-} \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

7d	Either M1 $\quad \mathbf{R}=\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}$ M2 NaOH or KOH M3 $\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]+3 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}+3 \mathrm{H}_{2} \mathrm{O}$ OR M1 $\quad \mathbf{R}=\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ M2 HCl or any named acid M3 $\left[\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]+3 \mathrm{H}^{+} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	3	Ignore state symbols Penalise charges on ligands in complex ion formulae Allow $\mathbf{R}=\left[\mathrm{Cr}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-}$or $\left[\mathrm{Cr}(\mathrm{OH})_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2-}$ do not allow OH^{-}but mark on, ignore excess/conc allow equations to form $\left[\mathrm{Cr}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-}$and $\left[\mathrm{Cr}(\mathrm{OH})_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2-}$ Do not allow equations from $\mathrm{Cr}(\mathrm{OH})_{3}$ OR Allow $\mathbf{R}=\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}$ or $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]^{+}$ Do not allow H^{+}etc, but mark on. Allow equations to form $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}$ or $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]^{+}$ or $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]^{2+}$ or $\left.\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right)\right]^{+}$but not $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right]$ Do not allow equations from $\mathrm{Cr}(\mathrm{OH})_{3}$
7 e	$\mathrm{Zn} / \mathrm{HCl}, \mathrm{Sn} / \mathrm{HCl}$, etc Blue	1	Allow $\mathrm{H}_{2} \mathrm{SO}_{4}$ instead of HCl Ignore H_{2} Mark independently

Question	Marking guidance	Mark	Comments
8 a	[Ar] $4 s^{2} 3 d^{7}$ or $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{7}$ [Ar] $3 d^{7}$ or $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{7}$ Any 3 Variable oxidation state Act as catalysts Form complexes Form coloured ions/compounds	1 3	Allow 4s and 3d in either order
8b	Two atoms that each donate a lone pair (of electrons) / coordinate bonds from two atoms Formula of ethane-1,2- diamine: $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+3 \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \rightarrow$ $\left[\mathrm{Co}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}$ There is an increase in the number of particles / the reaction goes from 4 moles to 7 moles disorder/entropy increases / $\Delta \mathrm{S}$ is positive $\Delta \mathrm{G}$ negative	1 1 1 1 1 1	M2 gained from equation or structure Equation must be balanced inc charges Allow en or $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}$ in equation for ethane-1,2-diamine Allow increase number of molecules/moles. Allow numbers that match an incorrect equation

Question	Marking guidance	Mark	Comments
9 a	A reaction that produces its own catalyst/ one of the products is the catalyst Mn^{2+}	1	
9 C	$\mathrm{H}_{2} \mathrm{SO}_{4}$	1	Allow Mn^{3+}

9c	There is no/very little catalyst at the start OR the reaction only speeds up when the catalyst is produced Two negative ions $\left(\mathrm{MnO}_{4}{ }^{-}\right.$and $\left.\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right) \underline{\text { repel }}$ The activation energy for the reaction is high / heat is required to overcome the activation energy	1	1

9d		1 1 1 1 1 1 1 1	Ignore state symbols M3 is for M2 $\times 5 / 2$ If wrong ratio used then can only score M2, M4, M5 and M6 M4 is for M3 $\times 10$ M 5 is for $\mathrm{M} 4 \div 3$ M6 is for M5 $\times 491$ (.1) Answer must be to 3 s.f. Correct answer scores 6 marks; mark equation separately Alternative method using ratio by moles: $\begin{aligned} & \text { M5 } n\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right)=4.66 \times 10^{-3} \times 3=0.0140 \text { moles in } 250 \mathrm{~cm}^{3} \\ & \text { M6 } n(\text { complex })=2.29 / 491.1=4.66 \times 10^{-3} \text { moles in } 250 \mathrm{~cm}^{3} \\ & \text { M7 } \%=0.0132 / 0.0140 \times 100=\underline{94.3 \text { or } 94.4 \%} \end{aligned}$

9 e	Make some known concentrations (of the coloured solution and read the absorbance of each one using a colorimeter) Plot a graph of absorbance vs concentration	1	Ignore addition of suitable ligand
	Read/compare unknown concentration from calibration curve/graph (and hence the concentration from the graph)	1	Not just "plot a calibration curve" / reference to Beer-Lambert graph is insufficient Do not allow transmittance in M2

