

GCE

Chemistry B (Salters)

Unit F334: Chemistry of Materials

Advanced GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2015

Annotations used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning		
/	alternative and acceptable answers for the same marking point		
✓	separates marking points		
not	answers which are not worthy of credit and which will CON a correct answer		
ignore	statements which are irrelevant and will NOT 'CON' a correct answer		
allow	answers that can be accepted		
()	words which are not essential to gain credit		
	underlined words must be present in answer to score a mark		
ecf	error carried forward		
AW	alternative wording (replaces the old 'or words to that effect')		
ora	or reverse argument		

Annotations used in scoris:

Annotation	Meaning
✓	correct response
×	incorrect response
bod	benefit of the doubt
nbod	benefit of the doubt not given
ECF	error carried forward
٨	information omitted
	Ignore
R	Reject

Subject-specific Marking Instructions that apply across the whole question paper to be included here.

Qu	Question		Answer	Mark	Guidance
1	1 a		ammonia / NH₃ ✓	1	NH ₄ ⁺ is a CON DO NOT ALLOW ammonium hydroxide, ammonium salt IGNORE conc., state
1	а	ii	N (atom) has lone pair (of electrons) ✓ which can accept a proton / hydrogen ion /H ⁺ ✓	2	
1	b	i	addition elimination ✓ 1 ALLOW circles instead		ALLOW circles instead of underlining
1	b	ii	O=C N—H	1	IGNORE additions to this linkage, but bonds must be shown on C and N.

Question	Answer	Mark	Guidance
1 c	$\begin{array}{c} & & & \\ & &$	2	Water must be shown as either H ₂ O or HO ₂ DO NOT ALLOW OH or H alone If water is given as HO ₂ AND hydrogen bond(s) and detail correct then award 1 mark IGNORE bond angles If two examples given, both must be correct for 2 marks
	hydrogen bond between O and H ✓ lone pair AND partial charges ✓		hydrogen bond must be as shown or dashed/dotted NOT a single line lone pair MUST BE in line with hydrogen bond
1 d	more hydrogen bonds ✓	1	ALLOW more groups/sites/places which can form H bonds, more electronegative atoms/N and O atoms which can form H bonds DO NOT ALLOW more Os which can form H bonds, bonds more easily
		8	

Que	estio	n	Answ	er	Mark	Guidance
2	а	i	ether ✓		1	
2	a	ii	HOH ₂ C OH either or both circled as above ✓		1	ALLOW if adjacent C is also circled
2	a	iii	HOH ₂ C HO OH both circled OH groups present ✓ full structural formula correct ✓	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	AWARD 1 mark if one of the circled OH groups is incorrect but rest of structure is correct
2	b	i	ethanoic acid ✓		1	

Qu	estio	n	Answer	Mark	Guidance
2	b	ii	cellulose triethanoate: instantaneous dipole-induced dipole & permanent dipole- permanent dipole polyester: instantaneous dipole-induced dipole & permanent dipole- permanent dipole marking: instantaneous dipole-induced dipole in both polymers ✓ permanent dipole- permanent dipole in both polymers ✓	2	ALLOW van der Waals for instantaneous dipole-induced dipole DO NOT ALLOW abbreviations DO NOT ALLOW instantaneous-induced dipole forces unless they have used instantaneous dipole-induced dipole once ALSO applies to permanent dipoles
2	b	iii	longer chains / length of chains ✓ more intermolecular bonds/forces in longer chains ORA ✓ OR polymer molecules/chains closer ✓ intermolecular bonds stronger ✓ ORA OR shorter monomer chains ✓ more intermolecular bonds between polymer chains / intermolecular bonds more frequent along polymer chains ✓ at temperatures below polymer's To ✓	2	hydrogen bonding is a CON so does not gain pd-pd mark NOTE amount of imb/fs per unit length will get 1 mark, needs to relate 'more' to 'stronger' for 2nd mark NOT how closely, more imbs may be inferred: linkages closer together IGNORE references to branch/side groups, crystallinity and any other factors
2	С		at temperatures <u>below</u> polymer's Tg ✓ chains / molecules cannot move/slide over one another ✓ chains / molecules break when force applied ✓	3	IGNORE references to polymers being brittle NOT polymers break/shatter chains/molecules may be implied by use of 'they' referring to polymer chains

Question	Answer	Mark	Guidance	
2 d	peak around 3500/3600 / in range 3200-3600 indicates O-H / hydroxyl bond in alcohol	2	IGNORE references to no O-H peak in range 2500-3200	
	so cellulose diethanoate since only 2 of the 3 OH groups in repeating unit of cellulose have reacted / one OH / no OH groups in cellulose triethanoate ora AW ✓		MUST relate OH group to answer DO NOT AWARD this mark if a COOH group is also given as present	
		1.0		
		14		

Question		Answer	Mark	Guidance
3 a	test	observations	4	
	For C (add neutral) iron(III) chloride (solution) / FeCl ₃ ✓	purple colour formed ✓		DO NOT ALLOW iron chloride ALLOW violet NOT blue or red ALLOW NaHCO ₃ / K for Na / Ca CO ₃ / MgCO ₃ / carbonate
	For D (add) Na ₂ CO ₃ (s) or (aq) ✓	solution / mixture fizzes / bubbles / effervesces / (colourless) gas given off ✓		
3 b i	HO	NH ₃ ⁺ C/ OH	2	Any clear structure acceptable ALLOW NH ₃ Cl. NH ₃ ⁺ DO NOT ALLOW an OH group to be bonded to the ring via -HO
	1 mark for each corre	ct structure ✓✓		

C	ues	tion	Answer	Mark	Guidance
3	ł	o ii	draw pencil-line near bottom of plate / sheet ✓	6	please annotate marks given with ticks ALL marking points may be gained from labelled diagram(s) 'near bottom' may be implied by what follows
			draw perion-line flear bottom of plate/sheet		DO NOT ALLOW paper for plate/sheet BUT ecf for further use
			place 1 drop (or similar word) of mixture AND a drop of each of the 2 compounds (on the line) AW ✓		ALLOW draw base-line with pencil
			place plate in solvent, line above solvent level AND add lid/cover ✓		
			when solvent nears top of plate AW, remove/dry plate ✓		
			locate spots with/ expose to UV light/iodine ✓		any other named leasting agent is a CON
			compare heights/position of spots from mixture with the two compounds AW OR calculate/measure/determine R _f values of spots and		any other named locating agent is a CON DO NOT ALLOW 'locating agent' alone DO NOT ALLOW vague statements about comparing spots, MUST refer to positions
			compare with those of the two compounds AW ✓		DO NOT ALLOW vague statements about R_f values e.g. R_f values will identify compounds MUST indicate that spot heights or R_f values have been measured AND compared

Question	Answer	Mark	Guidance
3 c i	for concentration to half: 1. 4.96×10^{-3} to $2.48 \times 10^{-3} = 220-30 = 190$ hours \checkmark 2. 3.83×10^{-3} to $1.92 \times 10^{-3} = 290-100 = 190$ hours \checkmark half-life constant (means 1 st order) \checkmark OR	3	units required for half-lives at least once otherwise 1 mark only for both times correct DO NOT ALLOW half-life MARK if no relevant data given
	every 70 hours, 1. from 30-100 hours = about 23% of conc. Is used up ✓ 2. from 220-290 hours = about 23% of conc. Is used up ✓ same proportion of starting conc. used up (means 1 st order) ✓ OR		IGNORE units
	every 70 hours (a set time interval) for 1 st order the concentration drop will be a constant ratio ✓		IGNORE units
	 from 30-100 hours = about 1.295 ✓ from 220-290 hours = about 1.292 ✓ 		NOTE any data referring to actual rates cannot be relevant/meaningful
3 c ii	average rate of reaction = (5.55 - 1.92) x 10 ⁻³ / 290 ✓ = 1.25 x 10 ⁻⁵	1	Give mark for getting the working correct, may make an error with calculator IGNORE units for rate of reaction
3 c iii	$k = 4.96 \times 10^{-9} / 4.96 \times 10^{-3} = 1.0 \times 10^{-6} \checkmark s^{-1} \checkmark$	2	ALLOW 1.00 x 10 ⁻⁶ or 1 x 10 ⁻⁶ or 10 ⁻⁶
3 d i	change/alter/different functional/side groups (in structure / formula) ✓	1	ALLOW add / remove group(s) IGNORE references to altering shape, specific named groups
3 d ii	make a large number of related compounds (together quickly) AW ✓	1	DO NOT ALLOW 'test' instead of 'make' MUST refer to a large number in some way e.g. many NOT just 'compounds'
		20	

Question		Answer	Mark	Guidance
4 a i	sulfur dioxide / OR chlorine ✓	sulfur trioxide	1	IGNORE formulae ALLOW hydrogen chloride NOT hydrochloric acid or sulfur (di)chloride
a ii	compound	oxidation state of vanadium	2	ONLY penalise ONCE for lack of sign sign must be before number, ecf after first error
	VS ₄	+4		
	NaVO ₃	+5		
	Na ₂ V ₆ O ₁₆	+5		
	V ₂ O ₅	+5		
	VS₄ correct ✓ rest correct ✓			
a iii	step 1 ✓		2	more than step 1 is a CON but mark explanation separately
	oxidation state	of V changes/increases ✓		ALLOW electron loss by V ALLOW ecf for the 2 nd mark, from wrong oxidation state for VS ₄ in table in aii , <i>e.g.</i> +8 (for VS ₄) to +5, so oxidation state decreases If two steps in first part , both reasons must refer correctly to the data in aii

Question	Answer	Mark	Guidance
a iv	absorb (specific) frequencies (or wavelengths) in (specific) parts of the visible spectrum ✓	2	MUST use frequency/frequencies/wavelength(s) for 1 st mark IGNORE any reference to energy levels and electrons ALLOW 'light' for visible
	absorb must be spelled correctly to gain this mark		or any of its variants <i>e.g.</i> absorbed, absorbing, absorption etc.
	transmit complementary colour / frequencies (or wavelengths) not absorbed / yellow light ✓		ALLOW only complementary colour / frequencies (or wavelengths) can be seen DO NOT ALLOW reflect / emit / absorbtion
a v	V ₂ O ₅ + 5Ca → 2V + 5CaO ✓	1	IGNORE state symbols
b	cooling / lowering / controlling temperature (of contents of furnace) ✓	1	ALLOW statements which infer cooling e.g. absorbs heat, prevents furnace getting too hot / thermal shock IGNORE references to cost, landfill

Question	Answer	Mark	Guidance
c i	Pt or C electrodes salt bridge diagram shows minimum requirements for 4 marks both electrodes correct ✓ correct vanadium species in each cell ✓ H⁺ ions in VO²⁺ and VO₂⁺ solution ✓ salt bridge labelled & dipping into solutions AND voltmeter attached correctly AND circuit complete ✓	4	IGNORE anions, charges on electrodes, water, temperature and concentrations
c ii	$E_{\text{cell}} = 1.26 \text{ V}$	1	IGNORE any sign
c iii	temperature is not standard / 25°C ✓ concentrations of ions in a half-cell are not equal ✓	2	DO NOT ALLOW conditions not standard, must be specific to temperature and/or concentration ALLOW concentration not 1 mol dm ⁻³ DO NOT ALLOW 1 mol(e) for concentration
c iv	VO ₂ ⁺ + 2H ⁺ + V ²⁺ → VO ²⁺ + H ₂ O + V ³⁺ vanadium species correct ✓ equation correct ✓	2	GIVE 1 mark if equation has species and balancing correct but is reversed

Question	Answer	Mark	Guidance
c v	VO_2^+ AND $E^{\circ}(I_2/I_{-})$ must be more negative/less positive than the V ion being reduced ORA \checkmark	2	ORA V half-cell is the only one with a more positive E^{θ} than the I_2/I^- half-cell
	$2VO_2^+ + 4H^+ + 2I^- \rightarrow 2VO^{2+} + 2H_2O + I_2 \checkmark$		ALLOW balanced equation with ½ l ₂ IGNORE state symbols
d i	moles of $Cr_2O_7^{2-}$ used = 0.02160 x 23.50 / 1000 = 0.0005076 (5.076 x 10 ⁻⁴) \checkmark moles of Fe^{2+} reacted = 6 x 0.0005076 \checkmark = 0.0030456 (3.0456 x 10 ⁻³)	5	DO NOT award marks for random numbers without any explanation to what they refer to marks are for working out shown in bold OR actual answers at each stage
	mass of Fe in alloy = 0.0030456 x 55.8 ✓ = 0.16994448 g		
	% Fe = 0.16994448 x100 / 0.1750 ✓ = 97.1 % ✓		must be 3 sig. figs. 97% gains 4 marks, 97.1% 5 marks, irrespective of working
d ii	oxygen / air (and water) will oxidise/change Fe ²⁺ (to Fe ³⁺)√ NaHCO ₃ reacts with acid to form CO ₂ ✓	3	
	air/gas is dispelled which cannot return AW ✓		
e i	green solution ✓ forms a green precipitate ✓	2	IGNORE any qualifying of green such as pale, dark, dirty, rust etc. ALLOW ppt ALLOW solid for precipitate
e ii	Fe ²⁺ (aq) + 2OH ⁻ (aq) → Fe(OH) ₂ (s) formulae correct & balanced ✓ state symbols correct for precipitation reaction ✓	2	· · ·
		32	

Question	Answer	Mark	Guidance
5 а	 to find out about their relatives / ancestors AW OR to diagnose illness / cure disease AW ✓ they are police / criminal suspects AW ✓ they have not been prosecuted OR they are innocent OR they have been found not guilty OR infringes privacy OR prevents access by other people AW ✓ 	3	NOTE they may have answered in a different order to the questions in the stem DO NOT ALLOW to be cleared of a crime AW IGNORE references to human rights/liberty
b i	nucleotide ✓	1	IGNORE any details of the constituents of nucleotides
b ii	Phosphate structure (circled) correct ✓ deoxyribose structure (circled) correct ✓ water structure ✓	3	The phosphate MUST be joined at the primary OH ALLOW H ₂ O or any bond angle for water

Question	Answer	Mark	Guidance
C	base pairs held together by hydrogen bonds AND guanine-cytosine 3 hydrogen bonds ✓ hydrogen bonds ✓ hydrogen bonds between base pairs break ✓ hydrogen bonds to a new (correct/complementary) base AW ✓	Mark 5	May be implied by staying the number of hydrogen bonds in each case different numbers of H bonds is NGE May refer to just one strand IGNORE references to phosphodiester bonds i.e. both forming and breaking H bonds have to be
	to gain this last point replication must be linked to breaking AND forming hydrogen bonds		mentioned in the answer
d	units curve correct shape ✓ label for optimum pH in line with fastest rate of reaction ✓	2	ALLOW any curve with a peak, not necessary to be symmetrical Optimum pH should indicate the peak of graph AND be labelled as such

Question	Answer	Mark	Guidance
e i	structure correct - 2 examples shown below COOH H O COOH COOH	1	ALLOW any correct structure ALLOW without 'spare bonds' ALLOW dipeptide structure which must have its secondary amide/peptide between two chiral C atoms
	H O H O		
e ii	((side) –COOH/carboxyl groups will (lose protons and)) form –COO ⁻ / carboxylate ions ✓	1	also forming NH ₂ ⁺ / NH ₃ ⁺ is a CON ALLOW carboxyl/COOH becomes deprotonated AW
	io Coorodisoxylato ioilo	16	7.220.7 Saladay # Co St. Sodomod deprotonated 7.44

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

