_	(*) ()	T	3.54		4 0064 4 0006 4 0000 164 0004 160
1	(i)(a)	$1 - P(\le 6) = 1 - 0.8675$	M1	•	1 – .9361 or 1 – .8786 or 1 – .8558: M19721: M0
		= 0.1325	A1	2	Or 0.132 or 0.133
	(b)	Po(0.42)	M1		Po(0.42) stated or implied
		$e^{-0.42} \frac{0.42^2}{2!} = 0.05795$	M1		Correct formula, any numerical λ
		2!	A1	3	Answer, art 0.058. Interpolation in tables: M1B2
	(ii)	E.g. "Contagious so incidences do	B2	2	Contextualised reason, referred to conditions: B2. No
		not occur independently", or "more			marks for mere learnt phrases or spurious reasons, e.g.
		cases in winter so not at constant			not just "independently, singly and constant average
		average rate"			rate". See notes.
2	(i)	B(10, 0.35)	M1		B(10, 0.35) stated or implied
		P(< 3)	M1		Tables used, e.g. 0.5138 or 0.3373 , or formula ± 1 term
		= 0.2616	A1	3	Answer 0.2616 or better or 0.262 only
	(ii)	Binomial requires being chosen	B2	2	Focus on "Without replacement" negating independence
		independently, which this is not, but			condition. It doesn't negate "constant probability"
		unimportant as population is large			condition but can allow B1 if "selected". See notes
3	(i)		M1		Standardise and equate to Φ^{-1} , allow "1 –" errors, σ^2 , cc
		$\left(\frac{32-40}{\sigma}\right) = \Phi^{-1}(0.2) = -0.842$	B1		0.842 seen
		$\sigma = 9.5[06]$	A1	3	Answer, 9.5 or in range [9.50, 9.51], c.w.o.
	(ii)	B(90, 0.2)	B1		B(90, 0.2) stated or implied
	(11)	$\approx N(18, 14.4)$	M1		N, their np
			A1		variance their npq , allow $\sqrt{\text{errors}}$
		$1 - \Phi\left(\frac{19.5 - 18}{\sqrt{14.4}}\right) = 1 - \Phi(0.3953)$	M1		Standardise with np and npq , allow $\sqrt{\ }$, cc errors, e.g.
		1	A1		396, .448, .458, .486, .472; \sqrt{npq} and cc correct
		= 1 - 0.6537 = 0.3463	A1	6	Answer, a.r.t. 0.346 [NB: 0.3491 from Po: 1/6]
4		$H_0: p = 0.4,$	B1		Fully correct, B2. Allow π . p omitted or μ used in both,
•		$H_1: p > 0.4$	B1		or > wrong: B1 only. x or \overline{x} or 6.4 etc: B0
		$R \sim B(16, 0.4)$:	M1		B(16, 0.4) stated or implied, allow N(6.4, 3.84)
	(a)	$P(R \ge 11) = 0.0191$	A1		Allow for $P(\le 10) = 0.9808$, and < 0.99 , or $z = 2.092$ or
	(66)	1(11 = 11) 0.0131			$p = 0.018$, but <i>not</i> $P(\le 11) = 0.9951$ or $P(= 11) = 0.0143$
		> 0.01	A1		Explicit comp with .01, or $z < 2.326$, not from ≤ 11 or $= 11$
	(0)	$CR R \ge 12 \text{ and } 11 < 12$	A1		Must be clear that it's ≥ 12 and not ≤ 11
	(β)	$CRR \ge 12$ and $11 < 12$ Probability 0.0049	A1		
		Do not reject H ₀ . Insufficient	M1		Needs to be seen, allow 0.9951 here, or $p = .0047$ from N
		evidence that proportion of		7	Needs like-with-like, $P(R \ge 11)$ or $CR R \ge 12$
		commuters who travel by train has	AIFI	,	Conclusion correct on their <i>p</i> or CR, contextualised, not
		increased			too assertive, e.g. "evidence that" needed.
5	(i)		M1		Normal, $z = 2.34$, "reject" [no cc] can get 6/7 30 + $5z/\sqrt{10}$, allow \pm but not just –, allow $$ errors
J	(i)	(a) $30 + 1.645 \times \frac{5}{\sqrt{10}}$	B1		
			A1		z = 1.645 seen, allow –
		= 32.6	A1 FT	4	Critical value, art 32.6
		Therefore critical region is $\bar{t} > 32.6$	YI I.I	7	"> c " or " $\geq c$ ", FT on c provided > 30, can't be recovered. Withhold if not clear which is CR
		(1) P(4 + 22 5 + 25)	M1*		
		(b) $P(t < 32.6 \mid \mu = 35)$	IVII		Need their c, final answer < 0.5 and $\mu = 35$ at least, but
		$\frac{32.6 - 35}{5/\sqrt{10}} \ [= -1.5178]$	dep*M1		allow answer > 0.5 if consistent with their (i) Standardise their CV with 35 and $\sqrt{10}$ or 10
		$5/\sqrt{10}$	A1	3	
		0.0645		5	Answer in range [0.064, 0.065], or 0.115 from 1.96 in (a)
	(ii)	$(32.6 - \mu) = 0$	M1		Standardise c with μ , equate to Φ^{-1} , can be implied by:
		$\mu = 32.6$	A1 FT		μ = their c
		20 + 0.6m = 32.6	M1		Equate and solve for m, allow from 30 or 35
		m = 21	A1	4	Answer, a.r.t. 21, c.a.o.
			1		MR: 0.05: M1 A0 M1, 16.7 A1 FT
			1		Ignore variance throughout (ii)

6	(a)	N(24, 24)	B1	Normal, mean 24 stated or implied
	(4)		B1	Variance or SD equal to mean
		$1 - \Phi\left(\frac{30.5 - 24}{\sqrt{24}}\right) = 1 - \Phi(1.327)$	M1	Standardise 30 with λ and $\sqrt{\lambda}$, allow cc or $\sqrt{\text{errors}}$, e.g.
		(12.)	A1	.131 or .1103; 30.5 and $\sqrt{\lambda}$ correct
		= 0.0923	A1 5	Answer in range [0.092, 0.0925]
	(l-)(:)		B1 1	
	(b)(i)	p or np [= 196] is too large		Correct reason, no wrong reason, don't worry about 5 or 15
	(ii)	Consider $(200 - E)$	M1	Consider complement
		$(200 - E) \sim Po(4)$	M1	Po(200×0.02)
		$P(\ge 6) = [= 1 - 0.7851]$	M1	Poisson tables used, correct tail, e.g. 0.3712 or 0.1107
7		= 0.2149	A1 4	Answer a.r.t. 0.215 only
7		$H_0: \mu = 56.8$	B2	Both correct
		$H_1: \mu \neq 56.8$	D1	One error: B1, but <i>not</i> \overline{x} , etc
		$\overline{x} = 17085/300 = 56.95$	B1	56.95 or 57.0 seen or implied
		$\frac{300}{973847}$ $\frac{56}{95^2}$	M1	Biased [2.8541] : M1M0A0
		$\frac{300}{299} \left(\frac{973847}{300} - 56.95^2 \right)$	M1	Unbiased estimate method, allow if ÷ 299 seen anywhere
		= 2.8637	A1	Estimate, a.r.t. 2.86 [not 2.85]
	()	56.95 - 56.8 = 1.535	M1 A1	Standardise with $\sqrt{300}$, allow $$ errors, cc
	(α)	$z = \frac{56.95 - 56.8}{\sqrt{2.8637/300}} = 1.535$	A1 A1	$z \in [1.53, 1.54] \text{ or } p \in [0.062, 0.063], not - 1.535$
		1.535 < 1.645 or 0.0624 > 0.05	AI	Compare explicitly z with 1.645 or p with 0.05, or
				$2p > 0.1$, not from $\mu = 56.95$
	(β)	CV 56.8 + 1.645 × 2.8637	M1	$56.8 + z\sigma/\sqrt{300}$, needn't have \pm , allow $\sqrt{\text{errors}}$
		$CV_{56.8 \pm 1.645} \times \sqrt{\frac{2.8637}{300}}$	A1	z = 1.645
		56.96 > 56.95	A1 FT	$c = 56.96$, FT on z, and compare 56.95 $[c_L = 56.64]$
		Do not reject H ₀ ;	M1	Consistent first conclusion, needs 300, correct method
		3		and comparison
		insufficient evidence that mean	A1 FT	Conclusion stated in context, not too assertive, e.g.
		thickness is wrong	11	"evidence that" needed
8	(i)	v-a+1]∞	M1	Integrate $f(x)$, limits 1 and ∞ (at some stage)
		$\int_{1}^{\infty} kx^{-a} dx = \left[k \frac{x^{-a+1}}{-a+1} \right]_{1}^{\infty}$	B1	Correct indefinite integral
		$\begin{bmatrix} -a+1 \end{bmatrix}_1$	A1 3	Correctly obtain given answer, don't need to see
		Correctly obtain $k = a - 1$ AG		treatment of ∞ but mustn't be wrong. Not k^{-a+1}
	(ii)	r^{-2}	M1	Integrate $xf(x)$, limits 1 and ∞ (at some stage)
	, ,	$\int_{1}^{\infty} 3x^{-3} dx = \left[3 \frac{x^{-2}}{-2} \right]_{1}^{\infty} = 1 \frac{1}{2}$		$[x^4 \text{ is } not \text{ MR}]$
		E. 31	M1	Integrate $x^2 f(x)$, correct limits
		$\int_{1}^{\infty} 3x^{-2} dx = \left[3 \frac{x^{-1}}{-1} \right]_{1}^{\infty} - (1 \frac{1}{2})^{2}$	A1	Either $\mu = 1\frac{1}{2}$ or $E(X^2) = 3$ stated or implied, allow $k, k/2$
		$\begin{bmatrix} J_1 & J_2 & J_1 & J_1 & J_2 & J_1 & J_1 & J_2 & J_$	M1	Subtract their numerical μ^2 , allow letter if subs later
		Answer 3/4	A1 5	Final answer $\frac{3}{4}$ or 0.75 only, ewo, e.g. not from $\mu = -1\frac{1}{2}$.
				[SR: Limits 0, 1: can get (i) B1, (ii) M1M1M1]
	(iii)	$\int_{1}^{2} (a-1)x^{-a} dx = \left[-x^{-a+1} \right]_{1}^{2} = 0.9$ $1 - \frac{1}{2^{a-1}} = 0.9, \ 2^{a-1} = 10$	M1*	Equate $\int f(x)dx$, one limit 2, to 0.9 or 0.1.
	(111)	$\int_{1}^{1} (a-1)x dx = [-x]_{1}^{2} - 0.9$	1.11	[Normal: 0 ex 4]
		. 1	dep*M1	Solve equation of this form to get 2^{a-1} = number
		$1 - \frac{1}{2^{a-1}} = 0.9, \ 2^{a-1} = 10$	M1 indept	Use logs or equivalent to solve 2^{a-1} = number
		a = 4.322	A1 4	Answer, a.r.t. 4.32. T&I: (M1M1) B2 or B0
		u = 1.522	-111 -4	1 1110 11 01, u.1.t. 7.52. 1 cd. (1111111) D2 01 D0

Specimen Verbal Answers

1	α	"Cases of infection must occur randomly, independently, singly and at				
		constant average rate"				
		B0				
	β	Above + "but it is contagious"	B1			
	γ	Above + "but not independent as it is contagious"	B2			
	δ	"Not independent as it is contagious"	B2			
	ε	"Not constant average rate", or "not independent"	B0			
	λ	"Not constant average rate because contagious" [needs more]	B1			
	ζ	"Not constant average rate because more likely at certain times of year"	B2			
	μ	Probabilities changes because of different susceptibilities	B0			
	ν	Not constant average rate because of different susceptibilities	B2			
	η	Correct but with unjustified or wrong extra assertion [scattergun]	B1			
	θ	More than one correct assertion, all justified	B2			
	π	Valid reason (e.g. "contagious") but not referred to conditions	B1			

[Focus is on explaining why the required assumptions might not apply. No credit for regurgitating learnt phrases, such as "events must occur randomly, independently, singly and at constant average rate, even if contextualised.]

2 Don't need either "yes" or "no".

α	"No it doesn't invalidate the calculation" [no reason]	B0
β	"Binomial requires not chosen twice" [false] B0	
γ	"Probability has to be constant but here the probabilities change"	B0
δ	Same but "probability of being chosen" [false, but allow B1]	B1
ε	"Needs to be independently chosen but probabilities change" [confusion]	B0
ζ	"Needs to be independent but one choice affects another" [correct]	B2
η	"The sample is large so it makes little difference" [false]	B0
θ	"The population is large so it makes little difference" [true]	B2
λ	Both correct and wrong reasons (scattergun approach)	B1

[Focus is on modelling conditions for binomial: On every choice of a member of the sample, each member of the population is equally likely to be chosen; and each choice is independent of all other choices.

Recall that in fact even without replacement the probability that any one person is chosen is the same for each choice. Also, the binomial "independence" condition <u>does</u> require the possibility of the same person being chosen twice.]

Some explanation seems necessary. The following are widespread but mistaken beliefs:

- Choosing a random sample by means of random numbers does not permit the same person to be chosen twice.
- Sampling without replacement causes *p* to change from one trial to another. Both of these are *FALSE*! Why?
- 1) Random sampling using random numbers demands that each member of the sample is chosen independently of every other member of the sample. If it is known that a certain person is in the sample and that that person cannot be chosen again, this fact changes the probability that another person is chosen next time. The same sequence of random digits can come up again. Just because, say, 123 has already occurred doesn't alter the fact that 123 is just as likely as any other 3-digit sequence to come up on any other go, and the same person can be chosen twice.
- Attention has been drawn before to the confusion that exists for many candidates between "trials are independent" and "each trial has the same probability of success", caused by too much emphasis on the misleading example of drawing counters out of a bag. Consider the present case. The probability that, say, the third student picked is a science student is 0.35, as it is for the first, second, ..., tenth. This is a familiar fact from \$1 and can easily be demonstrated using a tree diagram, assuming an appropriate total

population size (say 100). It is not the absolute ("prior") probabilities that change but the conditional probabilities, which are irrelevant.

In fact the binomial distribution applies only to sampling with replacement. Strictly, the proper method of calculating probabilities when sampling without replacement is the method using ${}^{n}C_{r}$ from S1. Again suppose the population is of size 100, of whom 35 are studying science subjects. Consider the probability that a sample of 10 students consists of exactly two who are studying science subjects.

- Case 1 (with replacement. Binomial): ${}^{10}C_2$ 0.35 2 0.65 8 = 0.1757. Case 2 (without replacement. nC_7): ${}^{35}C_2 \times {}^{65}C_8 / {}^{100}C_{10} = 0.1735$.

The difference is small, though not non-existent. The bigger the population, the smaller the difference; for a population of size 1000 the second probability is 0.1755. In real life, repeats are usually not allowed, but use of the binomial distribution remains appropriate provided the population is large enough. (There is a technical name for the ${}^{n}C_{r}$ method; it is called the hypergeometric distribution.)