Question		Answer	Marks	Guidance
1		$\frac{3 x}{(2-x)\left(4+x^{2}\right)}=\frac{A}{2-x}+\frac{B x+C}{4+x^{2}}$	M1	correct form of partial fractions (condone additional coeffs eg $\frac{\mathrm{Ax}+\mathrm{B}}{2-\mathrm{x}}+\frac{\mathrm{Cx}+\mathrm{D}}{4+\mathrm{x}^{2}} *$ for M1 BUT $\frac{\mathrm{A}}{2-\mathrm{x}}+\frac{\mathrm{B}}{4+\mathrm{x}^{2}} * *$ is M0)
		$\Rightarrow \quad 3 \mathrm{x}=\mathrm{A}\left(4+\mathrm{x}^{2}\right)+(\mathrm{Bx}+\mathrm{C})(2-\mathrm{x})$	M1	Multiplying through oe and substituting values or equating coeffs at LEAST AS FAR AS FINDING A VALUE for one of their unknowns (even if incorrect) Can award in cases * and ${ }^{* *}$ above Condone a sign error or single computational error for M1 but not a conceptual error $\begin{aligned} & \operatorname{Eg} 3 x=A(2-x)+(B x+C)\left(4+x^{2}\right) \text { is M0 } \\ & \quad 3 x(2-x)\left(4+x^{2}\right)=A\left(4+x^{2}\right)+(B x+C)(2-x) \text { is M0 } \end{aligned}$ Do not condone missing brackets unless it is clear from subsequent work that they were implied. $\begin{array}{r} \mathrm{Eg} 3 \mathrm{x}=\mathrm{A}\left(4+\mathrm{x}^{2}\right)+\mathrm{Bx}+\mathrm{C}(2-\mathrm{x})=4 \mathrm{~A}+\mathrm{Ax}^{2}+\mathrm{Bx}+2 \mathrm{C}-\mathrm{Cx} \text { is } \mathrm{M} 0 \\ =4 \mathrm{~A}+\mathrm{Ax} x^{2}+2 \mathrm{Bx}-\mathrm{Bx}^{2}+2 \mathrm{C}-\mathrm{Cx} \text { is } \mathrm{M} 1 \end{array}$
		$x=2 \Rightarrow 6=8 A, A=3 / 4$	A1	oe www [SC B1 A = 3/4 from cover up rule can be applied, then the M1 applies to the other coefficients] $\mathbf{N B} \frac{\mathrm{A}}{2-\mathrm{x}}+\frac{\mathrm{B}}{4+\mathrm{x}^{2}} \Rightarrow \mathrm{~A}=3 / 4$ is A 0 ww (wrong working)
		x^{2} coeffs: $0=\mathrm{A}-\mathrm{B} \Rightarrow \mathrm{B}=3 / 4$		oe www
		constants: $0=4 \mathrm{~A}+2 \mathrm{C} \Rightarrow \mathrm{C}=-11 / 2$	A1	oe www [In the case of $*$ above, all 4 constants are needed for the final A1] Ignore subsequent errors when recompiling the final solution provided that the coeffs were all correct
			[5]	

	Ques	Answer	Marks	Guidance
4	(i)	EITHER Use of $\cos =1 / \mathrm{sec}($ or $\sin =1 / \operatorname{cosec})$ From RHS $\begin{aligned} & \frac{1-\tan \alpha \tan \beta}{\sec \alpha \sec \beta} \\ & =\frac{1-\sin \alpha / \cos \alpha \cdot \sin \beta / \cos \beta}{1 / \cos \alpha \cdot 1 / \cos \beta} \\ & =\cos \alpha \cos \beta\left(1-\frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}\right) \end{aligned}$ $\begin{aligned} & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\ & =\cos (\alpha+\beta) \end{aligned}$	B1 M1 A1	Must be used Substituting and simplifying as far as having no fractions within a fraction [need more than $\frac{1-\mathrm{tt}}{\operatorname{secsec}}=\mathrm{cc}-\mathrm{ss}$ ie an intermediate step that can lead to $\mathrm{cc}-\mathrm{ss}$] Convincing simplification and correct use of $\cos (\alpha+\beta)$ Answer given
		OR From LHS, $\cos =1 / \mathrm{sec}$ or $\sin =1 / \operatorname{cosec}$ used $\cos (\alpha+\beta)$ $=\cos \alpha \cos \beta-\sin \alpha \sin \beta$ $=\frac{1}{\sec \alpha \sec \beta}-\sin \alpha \sin \beta$ $=\frac{1-\sec \alpha \sin \alpha \sec \beta \sin \beta}{\sec \alpha \sec \beta}$ $=\frac{1-\tan \alpha \tan \beta}{\sec \alpha \sec \beta}$	B1 M1 A1 [3]	Correct angle formula and substitution and simplification to one term OR eg $\cos \alpha \cos \beta-\sin \alpha \sin \beta$ $=\cos \alpha \cos \beta(1-\tan \alpha \tan \beta)$ Simplifying to final answer www Answer given Or any equivalent work but must have more than $\mathrm{cc}-\mathrm{ss}=$ answer.

	Quest	Answer	Marks	Guidance
4	(ii)	$\begin{aligned} & \beta=\alpha \\ & \cos 2 \alpha=\frac{1-\tan ^{2} \alpha}{\sec ^{2} \alpha} \\ & =\frac{1-\tan ^{2} \alpha}{1+\tan ^{2} \alpha} . \end{aligned}$	M1 A1	$\beta=\alpha$ used, Need to see $\sec ^{2} \alpha$ Use of $\sec ^{2} \alpha=1+\tan ^{2} \alpha$ to give required result Answer Given
		OR, without Hence, $\begin{aligned} & \cos 2 \alpha=\cos ^{2} \alpha\left(1-\frac{\sin ^{2} \alpha}{\cos ^{2} \alpha}\right) \\ & =\frac{1}{\sec ^{2} \alpha}\left(1-\tan ^{2} \alpha\right) \\ & =\frac{1-\tan ^{2} \alpha}{1+\tan ^{2} \alpha} \end{aligned}$	M1 [2]	Use of $\cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha$ soi Simplifying and using $\sec ^{2} \alpha=1+\tan ^{2} \alpha$ to final answer Answer Given Accept working in reverse to show RHS=LHS, or showing equivalent
4	(iii)	$\begin{aligned} & \cos 2 \theta=1 / 2 \\ & 2 \theta=60^{\circ}, 300^{\circ} \\ & \theta=30^{\circ}, 150^{\circ} \end{aligned}$	M1 A1 A1 [3]	Soi or from $\tan ^{2} \theta=1 / 3$ oe from $\sin ^{2} \theta$ or $\cos ^{2} \theta$ First correct solution Second correct solution and no others in the range SC B1 for $\pi / 6$ and $5 \pi / 6$ and no others in the range

Question		Answer	Marks	Guidance
5	(i)	EITHER $\begin{aligned} & x=e^{3 t}, y=t e^{2 t} \\ & d y / d t=2 t e^{2 t}+e^{2 t} \\ & \Rightarrow \quad d y / d x=\left(2 t^{2 t}+e^{2 t}\right) / 3 e^{3 t} \end{aligned}$ when $t=1, d y / d x=3 e^{2} / 3 e^{3}=1 / e$	B1 M1 A1 A1	soi Their $\mathrm{dy} / \mathrm{dt} \div \mathrm{dx} / \mathrm{dt}$ in terms of t oe cao allow for unsimplified form even if subsequently cancelled incorrectly ie can isw cao www must be simplified to $1 / \mathrm{e}$ oe
		OR		
		$\begin{aligned} & 3 \mathrm{t}=\ln \mathrm{x}, \mathrm{y}=\frac{\ln \mathrm{x}}{3} \mathrm{e}^{2 / 3 \ln \mathrm{x}}=\frac{\mathrm{x}^{2 / 3} \ln \mathrm{x}}{3} \\ & \begin{array}{c} \mathrm{dy} / \mathrm{dx}= \\ =\frac{1}{3} \mathrm{x}^{2 / 3} \frac{1}{\mathrm{x}}+\ln \mathrm{x} \frac{2}{9} \mathrm{x}^{-1 / 3} \\ \quad=\frac{1}{3 \mathrm{e}^{\mathrm{t}}}+\frac{2 \mathrm{t}}{3 \mathrm{e}^{\mathrm{t}}} \\ d y / d x=1 / 3 \mathrm{e}+2 / 3 \mathrm{e}=1 / \mathrm{e} \end{array} \end{aligned}$	B1 M1 A1 A1 [4]	Any equivalent form of y in terms of x only Differentiating their y provided not eased ie need a product including $\ln k x$ and x^{p} and subst $x=e^{3 t}$ to obtain dy/dx in terms of t oe cao www cao exact only must be simplified to $1 / \mathrm{e}$ or e^{-1}
5	(ii)	$\begin{aligned} & 3 t=\ln x \Rightarrow t=(\ln x) / 3 \\ & y=(\ln x) / 3 e^{(2 \ln x) / 3} \\ & y=\frac{1}{3} x^{\frac{2}{3}} \ln x \end{aligned}$	B1 M1 A1 [3]	Finding t correctly in terms of x Subst in y using their t Required form $\mathrm{ax}^{\mathrm{b}} \ln \mathrm{x}$ only NB If this work was already done in 5(i), marks can only be scored in 5(ii) if candidate specifically refers in this part to their part (i).

	Question	Answer	Marks	Guidance
6		$\begin{aligned} & \mathrm{y}=\left(1+2 \mathrm{x}^{2}\right)^{\frac{1}{3}} \Rightarrow \mathrm{y}^{3}=1+2 \mathrm{x}^{2} \\ & \Rightarrow \mathrm{x}^{2}=\frac{1}{2}\left(\mathrm{y}^{3}-1\right) \\ & \mathrm{V}=\int_{1}^{2} \pi \mathrm{x}^{2} \mathrm{dy}=\frac{1}{2} \pi \int_{1}^{2}\left(\mathrm{y}^{3}-1\right) \mathrm{dy} \\ & =\frac{1}{2} \pi\left[\frac{1}{4} \mathrm{y}^{4}-\mathrm{y}\right]_{1}^{2}=\frac{1}{2} \pi\left(2+\frac{3}{4}\right) \\ & =\frac{11}{8} \pi \end{aligned}$	M1 M1 A1 B1 M1 A1 $[6]$	finding x^{2} (or x) correctly in terms of y For M1 need $\int \pi x^{2} d y$ with substitution for their x^{2} (in terms of y only) Condone absence of dy throughout if intentions clear. (need π) www For A1 it must be correct with correct limits 1 and 2, but they may appear later $1 / 2\left[y^{4} / 4-y\right]$ independent of π and limits substituting both their limits in correct order in correct expression, condone a minor slip for M1 (if using $\mathrm{y}=0$ as lower limit then ' -0 ' is enough) condone absence of π for M1 oe exact only www ($13 / 8 \pi$ or 1.375π)

Question		Answer	Marks	Guidance
7	(i)	$\mathrm{AB}=\sqrt{5^{2}+(-2)^{2}}=\sqrt{29}$	B1	5.39 or better (condone sign error in vector for B1)
		$\mathrm{AC}=\sqrt{3^{2}+4^{2}}=5$	B1	Accept $\sqrt{ } 25 \quad$ (condone sign error in vector for B1)
		$\cos \theta=\frac{\left(\begin{array}{l} 5 \\ 0 \\ -2 \end{array}\right) \cdot\left(\begin{array}{l} 3 \\ 4 \\ 0 \end{array}\right)}{\sqrt{29} \cdot 5}=\frac{15+0+0}{5 \sqrt{29}}=0.5571$	M1	$\cos \theta=\frac{\text { scalar product of } \mathrm{AB} \text { with } \mathrm{AC}}{\|\mathrm{AB}\| .\|\mathrm{AC}\|} \quad \text { (accept BA/CA) }$ with substitution condone a single numerical error provided method is clearly understood [OR Cosine Rule, as far as $\cos \theta=$ correct numerical expression]
			A1	$\mathbf{w w w} \pm 0.5571,0.557,15 / 5 \sqrt{ } 29,15 / \sqrt{ } 25 \sqrt{ } 29$ oe or better soi (\pm for method only)
		$\Rightarrow \quad \theta=56.15^{\circ}$	A1	www Accept answers that round to 56.1° or 56.2° or 0.98 radians (or better) NB vector $\mathbf{5 i + 0} \mathbf{j}+\mathbf{2 k}$ leads to apparently correct answer but loses all A marks in part(i)
		$\text { Area }=1 / 2 \times 5 \times \sqrt{29} \times \sin \theta$	M1	Using their $\mathrm{AB}, \mathrm{AC}, \angle \mathrm{CAB}$. Accept any valid method using trigonometry
		$=11.18$	A1	Accept $5 \sqrt{ } 5$ and answers that round to 11.18 or 11.19 (2dp) www or SCA1 for accurate work soi rounded at the last stage to 11.2 (but not from an incorrect answer, say from an incorrect angle or from say 11.17 or 11.22 stated and rounded to 11.2) We will not accept inaccurate work from over rounded answers for the final mark.
			[7]	

Question			Answer	Marks	Guidance
7	(ii)	(A)	$\begin{aligned} & \overrightarrow{\mathrm{AB}} \cdot\left(\begin{array}{l} 4 \\ -3 \\ 10 \end{array}\right)=\left(\begin{array}{l} 5 \\ 0 \\ -2 \end{array}\right)\left(\begin{array}{l} 4 \\ -3 \\ 10 \end{array}\right)=5 \cdot 4+0 \cdot(-3)+(-2) \cdot 10=0 \\ & \overrightarrow{\mathrm{AC}} \cdot\left(\begin{array}{l} 4 \\ -3 \\ 10 \end{array}\right)=\left(\begin{array}{l} 3 \\ 4 \\ 0 \end{array}\right) \cdot\left(\begin{array}{l} 4 \\ -3 \\ 10 \end{array}\right)=3 \times 4+4 \times(-3)+0 \times 10=0 \end{aligned}$	B1 B1 [2]	Scalar product with one vector in the plane with numerical expansion shown. Scalar product, as above, with evaluation, with a second vector. NB vectors are not unique SCB2 finding the equation of plane first by any valid method (or using vector product) and then clearly stating that the normal is proportional to the coefficients. SC For candidates who substitute all three points in the plane $4 x-3 y+10 z=c$ and show that they give the same result, award M1 If they include a statement explaining why this means that $4 \mathbf{i}-3 \mathbf{j}+10 \mathbf{k}$ is normal they can gain A1.
7	(ii)	(B)	$4 x-3 y+10 z=c$ $\Rightarrow 4 x-3 y+10 z+12=0$	M1 A1 [2]	Required form and substituting the co-ordinates of a point on the plane oe If found in (A) it must be clearly referred to in (B) to gain the marks. Do not accept vector equation of the plane, as 'Hence'. $4 \mathbf{i}-\mathbf{3} \mathbf{j}+10 \mathbf{k}=-12 \text { is } \mathrm{M} 1 \mathrm{~A} 0$

	Ques	Answer	Marks	Guidance
7	(iii)	$\mathbf{r}=\left(\begin{array}{l} 0 \\ 4 \\ 5 \end{array}\right)$ $+\lambda\left(\begin{array}{l} 4 \\ -3 \\ 10 \end{array}\right)$ Meets $4 \mathrm{x}-3 \mathrm{y}+10 \mathrm{z}+12=0$ when $\begin{aligned} & 16 \lambda-3(4-3 \lambda)+10(5+10 \lambda)+12=0 \\ \Rightarrow \quad & 125 \lambda=-50, \lambda=-0.4 \end{aligned}$ So meets plane ABC at $(-1.6,5.2,1)$	B1 B1 M1 A1 A1 [5]	Need $\mathbf{r}=\left(\right.$ or $\left(\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right)$) oe Subst their $4 \lambda, 4-3 \lambda, 5+10 \lambda$ in equation of their plane from (ii) $\lambda=-0.4 \quad \text { (NB not unique) }$ cao www (condone vector)
7	(iv)	$\begin{aligned} & \text { height }=\sqrt{ }\left(1.6^{2}+(-1.2)^{2}+4^{2}\right)=\sqrt{ } 20 \\ & \text { volume }=11.18 \times \sqrt{ } 20 / 3=16.7 \end{aligned}$	B1ft B1cao [2]	ft their (iii) $50 / 3$ or answers that round to 16.7 www and not from incorrect answers from (iii) ie not from say $(1.6,2.8,9)$

	ues	Answer	Marks	Guidance
8	(i)	Either $\mathrm{h}=(1-1 / 2 \mathrm{At})^{2} \Rightarrow \mathrm{dh} / \mathrm{dt}=-\mathrm{A}(1-1 / 2 \mathrm{At})$ $=-\mathrm{A} \sqrt{ } \mathrm{~h}$ when $t=0, \mathrm{~h}=(1-0)^{2}=1$ as required OR $\begin{aligned} & \int \frac{\mathrm{dh}}{\sqrt{\mathrm{~h}}}=\int-\mathrm{Adt} \\ & 2 \mathrm{~h}^{1 / 2}=-\mathrm{At}+\mathrm{c} \\ & \mathrm{~h}=\left(\frac{-\mathrm{At}+\mathrm{c}}{2}\right)^{2} \text { at } \mathrm{t}=0, \mathrm{~h}=1,1=(\mathrm{c} / 2)^{2} \Rightarrow \mathrm{c}=2, \mathrm{~h}=(1-\mathrm{At} / 2)^{2} \end{aligned}$	M1 A1 B1 M1 A1 B1 [3]	Including function of a function, need to see middle step AG Separating variables correctly and integrating Including c. [Condone change of c.] Using initial conditions AG
8	(ii)	When $\mathrm{t}=20, \mathrm{~h}=0$ $\Rightarrow 1-10 \mathrm{~A}=0, \mathrm{~A}=0.1$ When the depth is $0.5 \mathrm{~m}, 0.5=(1-0.05 \mathrm{t})^{2}$ $\Rightarrow \quad 1-0.05 \mathrm{t}=\sqrt{ } 0.5, \mathrm{t}=(1-\sqrt{ } 0.5) / 0.05=5.86 \mathrm{~s}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \\ & \hline \end{aligned}$	Subst and solve for A cao substitute $\mathrm{h}=0.5$ and their A and solve for t www cao accept 5.9

Question		Answer	Marks	Guidance
8	(iii)	$\begin{aligned} & \frac{d h}{d t}=-B \frac{\sqrt{h}}{(1+h)^{2}} \\ & \Rightarrow \int \frac{(1+h)^{2}}{\sqrt{\mathrm{~h}}} d h=-\int B d t \end{aligned}$	M1	separating variables correctly and intend to integrate both sides (may appear later) [NB reading ($\mathbf{1}+\mathrm{h})^{\mathbf{2}}$ as $\mathbf{1 + h}{ }^{\mathbf{2}}$ eases the question. Do not mark as a MR] In cases where $(1+\mathrm{h})^{2}$ is MR as $1+\mathrm{h}^{2}$ or incorrectly expanded, as say $1+h+h^{2}$ or $1+h^{2}$, allow first M1 for correct separation and attempt to integrate and can then score a max of M1M0A0A0A1 (for $-\mathrm{Bt}+\mathrm{c}$) A0A0, max 2/7.
		EITHER, LHS		
		$\int \frac{1+2 h+h^{2}}{\sqrt{h}} d h$ $=\int\left(\mathrm{h}^{-1 / 2}+2 \mathrm{~h}^{1 / 2}+\mathrm{h}^{3 / 2}\right) \mathrm{dh}$	M1 A1	expanding $(1+\mathrm{h})^{2}$ and dividing by $\sqrt{ } \mathrm{h}$ to form a one line function of h (indep of first M1) with each term expressed as a single power of h eg must simplify say $1 / \sqrt{h}+2 h / \sqrt{h}+h^{2} \sqrt{h}$,condone a single error for M1 (do not need to see integral signs) $h^{-1 / 2}+2 h^{1 / 2}+h^{3 / 2}$ cao dep on second M only -do not need integral signs
		OR ,LHS, EITHER		
		$\left(1+2 h+h^{2}\right) 2 h^{1 / 2}-\int 2 h^{1 / 2}(2+2 h) d h$ OR $h^{1 / 2}+h^{3 / 2}+\frac{h^{5 / 2}}{3}+\int \frac{1}{2} h^{-3 / 2}\left(h+h^{2}+\frac{h^{3}}{3}\right) d h$	M1 A1	using $\int u d v=u v-\int v d u$ correct formula used correctly, indep of first M1 condone a single error for M1if intention clear cao oe
		$\begin{aligned} & 2 h^{1 / 2}+\frac{4 h^{3 / 2}}{3}+\frac{2 h^{5 / 2}}{5} \\ & =-B t+c \\ & \Rightarrow 2 h^{1 / 2}+4 h^{3 / 2} / 3+2 h^{5 / 2} / 5=-\mathrm{Bt}+\mathrm{c} \\ & \text { When } \mathrm{t}=0, \mathrm{~h}=1 \Rightarrow \mathrm{c}=56 / 15 \\ & \Rightarrow \mathrm{~h}^{1 / 2}\left(30+20 \mathrm{~h}+6 \mathrm{~h}^{2}\right)=56-15 \mathrm{Bt} * \end{aligned}$	A1 A1 A1 A1 [7]	cao oe, both sides dependent on first M1 mark cao need -Bt and c for second A1 but the constant may be on either side from correct work only (accept 3.73 or rounded answers here but not for final A1) or $c=-56 / 15$ if constant on opposite side. NB AG must be from all correct exact work including exact c.

	Ques	Answer	Marks	Guidance
8	(iv)	$\begin{aligned} & \mathrm{h}=0 \text { when } \mathrm{t}=20 \\ & \Rightarrow \mathrm{~B}=56 / 300=0.187 \\ & \text { When } \mathrm{h}=0.5 \quad 56-2.8 \mathrm{t}=29.3449 \ldots \\ & \Rightarrow \mathrm{t}=9.52 \mathrm{~s} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { [4] } \end{gathered}$	Substituting $\mathrm{h}=0, \mathrm{t}=20$ Accept 0.187 Subst their $\mathrm{h}=0.5$, ft their B and attempt to solve Accept answers that round to 9.5 s www.

