Question	Scheme	Marks	AOs
1(a)	$P(A > 3) = \frac{2}{5}$	B1	1.1b
	$(2)^3$ 8	M1	1.1a
	$\left(\overline{5}\right) = \overline{125}$	A1	1.1b
		(3)	
(b)	$f(y) = \frac{3y^2}{125}$	M1	2.1
	$E(Y) = \int_0^5 \frac{3y^3}{125} dy$ $= \left[\frac{3y^4}{500} \right]_0^5 \qquad \left[= \frac{15}{4} \right]$	M1	1.1b
	$Var(Y) = \iint_{0}^{5} \left(\frac{3y^{4}}{125}\right) dy \qquad \left(\frac{15}{4}\right)^{2}$	M1	1.1b
	= 0.9375*	A1*cso	1.1b
		(4)	
(c)	Mode = 5	B1	1.2
	$\int_{0}^{y} \int_{5}^{y} f(y) = 0$ Or reason based on $\frac{df(y)}{dy} > 0$	B1	2.4
		(2)	
(d)	From a sketch or mode > mean therefore it has negative skew	B1ft	2.4
		(1)	
(e)	$\frac{(2k)^3}{125} - \frac{k^3}{125} = 0.189$	M1	3.1a
	$\frac{7k^3}{125} = 0.189$	A1	1.1b
	k = 1.5	A1	1.1b
		(3)	
		(13 m	arks)

Quest	Question 1 notes:				
(a)					
B1:	$\frac{2}{5}$ o.e. may be implied by a correct answer				
M1:	$\left(\text{"their}\left(\frac{2}{5}\right)\right)^3$ may be implied by a correct answer				
A1:	$\frac{8}{125}$ o.e.				
(b) M1: M1:	Realising that firstly need to find pdf $f(y)$ and attempt to differentiate $F(y)$ Continuing the argument with an attempt to integrate $y \times$ "their $f(y)$ " $y^n \rightarrow y^{n+1}$				
M1:	Integrating $y^2 \times$ "their f(y)" - ["their E(Y)"] ² $y^n \rightarrow y^{n+1}$				
A1*:	Complete correct solution no errors				
(c) B1: B1:	5 only Explain their reason by either an accurate sketch or $\frac{df(y)}{dt} > 0$ therefore an increasing				
	dy dy				
<	function o.e.				
(d) B1ft: NB:	Explaining the reason for their answer. Follow through their part(b) or mean from(d) and mode from(c). A correct sketch of "their $f(y)$ " – may be seen anywhere in question or ft their mean and mode plus a correct conclusion Watch for gaming. A student who writes both negative skew with a reason and positive skew with a reason. Please send these to your Team Leader				
(e) M1:	Attempting to translate the problem into an equation using $2k$ and k . Allow if the brackets				
	are missing e.g. $\frac{2\kappa}{125} - \frac{\kappa}{125}$. No need for the 0.189				
A1:	A correct equation in any form				
A1:	A correct answer only				

Quest	ion Scheme	Marks	AOs		
2(a) $H_0: \rho = 0, H_1: \rho > 0$	B1	2.5		
	Critical value at 1% level is 0.8929		1.1b		
	$r_s < 0.8929$ so not significant evidence to reject H ₀		2.1		
	 The researcher's claim is not correct (at 1% level) or insufficient evidence for researcher's claim or there is insufficient evidence that water gets deeper further from inner bank or no (positive) correlation between depth of water and distance from inner bank 		2.2b		
		(4)			
(b)(i) The ranks will remain the same therefore there will be no change to the spearman's rank correlation coefficient	B 1	2.4		
(ii)	Spearman's rank correlation coefficient will increase since	B1	2.2a		
	The ranks are the same for both distance and depth therefore $d = 0$ however, <i>n</i> has increased or the new position follows the pattern that large <i>b</i> is associated with large <i>s</i> and so r_s will increase	B1	2.4		
(c)	The mean of the tied ranks is given to each	B1	2.4		
	then use PMCC	B1	2.4		
		(2)			
		(9 n	narks)		
Notes	•				
(a) B1: B1: M1: A1ft: (b)(i) B1:	 Both hypotheses correct written using the notation p awrt 0.893 Drawing a correct inference using their answer to part(a) and their CV ft: Drawing a correct inference in context using their answer to part(a) and their CV (i) Stating no change and an explanation including ranks remain unchanged o.e. and no 				
	change o.e.				
(b)(ii) B1: B1:	nterpreted the outcome of adding a point as increased oe Explaining why. Need to mention the ranks are the same for both oe and <i>n</i> has increased be				
(c) B1: B1:	Explaining that the mean of the values for the tied ranks is given to both values Explaining that the PMCC must be used				

Questi	on Scheme	Marks	AOs			
3 (a)	95% CI for μ uses t value of 2.064	B1	3.3			
	$\frac{\hat{\sigma}}{\sqrt{25}}$ ×"2.064" = $\frac{1}{2}$ (2.232 - 1.128) <u>or</u>	M1	2.1			
	$\frac{1}{2}(2.232+1.128) + "2.064" \times \frac{\hat{\sigma}}{\sqrt{25}} = 2.232 \text{ (oe)}$	1411	2.1			
	$\hat{\sigma} = \frac{2.76}{"2.064"}$ or 1.3372	M1	1.1b			
	$\hat{\sigma}^2 = 1.788[=1.79 (3sf)] *$	A1*cso	1.1b			
		(4)				
(b)	$12.401, < \frac{24 \times 1.79}{\sigma^2} <, 39.364$	B1 M1	1.1b 1.1a			
	$\underline{1.09} < \sigma^2 < \underline{3.46}$	A1	1.1b			
		(3)				
		(7 m	narks)			
Notes:						
(a) B1:	(a)B1: Realising that the <i>t</i>-distribution must be used as a model and finding the correct value awrt 2.06					
M1:	: Using the correct formula with a <i>t</i> -value, $\frac{\hat{\sigma}}{\sqrt{25}} \times "t$ value" = $\frac{1}{2} (2.232 - 1.128)$ or					
$\frac{1}{2}(2.232+1.128) + "t \text{ value"} \times \frac{\hat{\sigma}}{\sqrt{25}} = 2.232 \text{ or}$						
	$\frac{1}{2}(2.232+1.128) - "t \text{ value}" \times \frac{\hat{\sigma}}{\sqrt{25}} = 1.128$					
M1:	M1: Rearranging one of these formula accurately to find a value of $\hat{\sigma}$					
A1cso*: A correct solution only using awrt 1.79						
(b) B1:	awrt 12.4 or 39.4 May be implied by a correct confidence interval					
M1:	$\frac{24 \times 1.79}{\sigma^2}$ May be implied by a correct confidence interval					
A1:	awrt 1.09 and awrt 3.46					

Quest	tion Scheme	Marks	AOs		
4 (a	$H_0: \sigma_G^2 = \sigma_B^2, H_1: \sigma_G^2 \neq \sigma_B^2,$	B1	2.5		
	$s_B^2 = \frac{1}{6}(56130 - 7 \times 88.9^2) = \frac{807.53}{6} = 134.6$	M1 A1	2.1 1.1b		
	$s_G^2 = \frac{1}{7}(55746 - 8 \times 83.1^2) = \frac{501.12}{7} = 71.58$		1.1b		
	$\frac{s_B^2}{s_G^2} = 1.880$		3.4		
	Critical value $F_{6,7} = 3.87$	B1	1.1b		
	Not significant, variances can be treated as the same	A1 ft	2.2b		
		(7)			
(b)) H ₀ : $\mu_B = \mu_G$, H ₁ : $\mu_B > \mu_G$	B1	2.5		
	Pooled estimate of variance $s^2 = \frac{6 \times 1346 + 7 \times 71.58}{13} = 100.6653$	M1	3.1b		
	Test statistic $t = \frac{88.9 - 83.1}{2}$ = awrt 1 12	M1	1.1b		
	$\frac{1}{s\sqrt{\frac{1}{7}+\frac{1}{8}}} = \frac{1}{s\sqrt{1}}$	A1	1.1b		
	Critical value $t_{13}(5\%) = 1.771$	B1	1.1b		
	Insufficient evidence to support mother's claim	A1 ft	2.2b		
		(6)			
	(13 marks)				
Notes	:				
(a) D1.	Both hypotheses correct using the notation -2^{2} Allow rather than -2^{2}				
Ы. M1.	Using a correct Method for either s^2 or z^2 May be implied by a correct w	lua			
	a correct method for entitier s_B of s_G^2 may be implied by a correct value and s_B^2	lluc			
A1:	awrt 71.6				
M1:	Using the F-distribution as the model e.g. $\frac{s_B^2}{s_B^2}$				
B1:	awrt 3.87				
A1ft:	Drawing a correct inference following through their CV and value for $\frac{s_B^2}{s_C^2}$				
(b) B1: M1:	Both hypotheses correct using the notation μ For realising the need to find the pooled estimate for the test require from a correct				
	interpretation of the question				
M1:	Correct method for test statistic $t = \frac{88.9 - 83.1}{\text{"their } s'' \sqrt{\frac{1}{7} + \frac{1}{8}}}$ May be implied by a correct				
A1: B1: A1ft:	awrt 1.12 awrt 1.12 awrt 1.77 Drawing a correct inference following through their CV and test statistic				

Quest	tion	Scheme	Marks	AOs	
5(a	l)	Let $X = L - 4S$ then $E(X) = 19.6 - 4 \times 4.8$	M1	2.3	
	= 0.4			1.1b	
	$Var(X) = Var(L) + 4^{2} Var(S) = 0.6^{2} + 16 \times 0.3^{2}$				
	= 1.8				
	$P(X > 0) = [P(Z > \frac{0 - 0.4}{\sqrt{1.8}} = -0.298)]$				
		= 0.617202 awrt <u>0.617</u>	A1	1.1b	
			(6)		
(b))	$T = S_1 + S_2 + S_3 + S_4$ (May be implied by 0.36)	M1	3.3	
		$T \sim N(19.2, 0.36)$ $E(T) = 19.2$	B1	1.1b	
		$Var(T) = 0.36$ or 0.6^2	A1	1.1b	
			(3)		
(c))	Let $Y = L - T$ $E(Y) = E(L) - E(T) = [0.4]$	M1	3.3	
		Var(Y) = Var(L) + Var(T) = [0.72]	M1	1.1b	
		Require $P(-0.2 < Y < 0.2)$	M1	3.1a	
		= 0.16708 awrt <u>0.167</u>	A1	1.1b	
			(4)		
			(13 n	1arks)	
Notes	5				
(a) M1:	Sele	sting and using an appropriate model i.e. $\pm(L-4S)$. May be implied	bv 0 4		
A1: M1: A1:	0.4 oe For realising the need to use $Var(L) + 4^2Var(S)$. Allow use of 0.6 for $Var(L)$ instead of 0.6 ² and/or 0.3 for $Var(S)$ instead of 0.3 ² may be implied by 1.8 1.8 only				
M1:	For realising P(X>0) is required and an attempt to find it e.g. $\frac{0-0.4}{\sqrt{"\text{their Var}(X)"}}$ but do not				
A1:	allow a negative Var(X) awrt 0.617				
(b) M1: B1: A1:	Selecting and using an appropriate model ie $s_1 + s_2 + s_3 + s_4$: may be implied by 0.36 19.2 only 0.36				
(c) M1:	Setting up and using the model $Y = L - T$. May be implied by $E(Y) = E(L) - E(T)$				
M1: M1: A1:	Using $Var(Y) = Var(L) + Var(T)$ Dealing with the modulus and realising they need to find P($-0.2 \le Y \le 0.2$) awrt 0.167				

Question		Sc	heme			Marks	AOs
6(a)	$\left[b = \frac{\mathbf{S}_{xm}}{\mathbf{S}_{xx}} = -0.0277576\right]$					M1	3.3
	$[a = \overline{m} -$	$b\overline{x} = 1.278 +$	0.0277576× 8.5	5 = 1.5139]			
		m = 1.5139	9 - 0.02775x			A1	1.1b
						(2)	
(b)		RSS = 0.12 ²	$756 - \frac{(-2.29)^2}{82.5}$			M1	1.1b
		= 0.	06399*			A1*	1.1b
						(2)	
(c)	x	т	m = a + bx	£			
	4	1.50	1 4029	+0.0971			
	5	1.20	1 3752	-0.1752			
	6	1.40	1.3474	+0.0526			
	7	1.40	1.3196	+0.0804			
	8	1.23	1.2919	- 0.0619		M1	3.4
	9	1.30	1.2641	+0.0359		A 1	1 11
	10	1.20	1.2364	- 0.0364		AI	1.10
	11	1.15	1.2086	- 0.0586			
	12	1.25	1.1808	+0.0692			
	13	1.15	1.1531	- 0.0031			
						(2)	
(d)						(<i>2</i>)	2.21
(u)	The point (5, 1.2) is an outlier				ВІП	2.20	
		0.1				(1)	
(e)(i)	It is a valid piece of data so should be used or It does not follow the pattern according to the residuals so may					B1	2.4
(ii)) (1	2.2
(11)	a = m - bx = 1.2860	67 +0.03765	× 8.88889 = 1.62	213		MI	3.3
	m = 1.6213 - 0.03765x					A1	1.1b
(iii)	m = 1.6213 - 0.037	65× 15					
	= 1.056 or awrt	1.06				B1ft	3.4
(iv)	The model is only reliable if the values are limited to those in the given range so probably not reliable			;	B1	3.5b	
						(5)	
						(12 n	1arks)

Quest	ion 6 notes:
6(a)	
M1:	Realising the need to use $b = \frac{S_{xm}}{S_{xx}}$ and $a = \overline{m} - b\overline{x}$
A1:	m = awrt (1.51) - (awrt (0.0278)) x. Award M1A1 for correct equation
(b)	
M1:	Using $S_{mm} - \frac{\left(S_{xm}\right)^2}{S_{xx}}$
A1*:	awrt 0.064
(c) M1: A1:	Using the model in part (a) i.e. $m - ("1.5139" - "0.02775"x)$ implied by a correct value All correct. Award M1A1 for a list of correct residuals
(d) B1•	Inferring from the residuals that the outlier is $(5, 1, 2)$ ft their residuals
(e)(i) B1:	Explaining why the outlier should be removed or not.
(ii) M1: A1:	Removing the outlier and refining the model by finding a new regression line. m = (awrt 1.62) - (awrt 0.0377)x
(iii) B1ft:	using their model in $e(i)$ with $x = 15$. awrt 1.06 or ft their $e(ii)$
(iv) B1:	Realising the limitations of the model by stating it is <u>not reliable</u> and giving the reason why i.e. extrapolation/out of range o.e.

Quest	stion Scheme		Marks	AOs	
7(a	7(a) $S_{xx} = \sum (10s)^2 - \frac{(\sum 10s)^2}{10}$		M1	2.1	
	$2658.9 = 100 \sum (s)^2 - \frac{100 (\sum s)^2}{10}$		M1	1.1b	
	$2658.9 = 100 S_{ss}$				
	$S_{ss} = 26.589 *$		A1*cso	1.1b	
			(3)		
(0)	$64 = \sum_{i=1}^{n} 10(d_i - 9)$		M1	3.1a	
	$64 = 10\sum_{1}^{10} d_i - 900$				
	$\sum_{i=1}^{10} d_i = 96.4$		A1	1.1b	
	$S_{dd} = 1081.74 - \frac{("96.4")^2}{10}$		M1	1.1b	
	= 152.444				
	r = 0.935		A1ft	1.1b	
			(4)		
(c)	Linear correlation is significant but scatter diagination is significant but scatter diagonal linear relationship between the level of serum more level of the disease protein	am suggests a non- agnesium, and the	B1	3.5a	
			(1)		
			(8 n	narks)	
Notes	s:				
(a) M1:	: Attempting to use $S_{xx} = \sum x^2 - \frac{(\sum x)^2}{x}$ with $x = 10s$				
M1: A1*:	Substituting in 2658.9 and dealing with the 10 correctly cso A complete solution with no errors leading to 26 589 only				
(b)					
M1:	Realising that either $64 = \sum_{i=1}^{10} 10(d_i - 9)$ or $64 = 10\sum_{i=1}^{10} d_i$	-900 o.e. must be use	ed. May b	e	
A1:	implied by seeing 96.4 96.4 only				
M1:	Attempting to use $S_{dd} = \sum d^2 - \frac{\left(\sum d\right)^2}{10}$ may be implied by 0.935				
A1ft:	awrt 0.935 ft "their 96.4"				
(c) B1:	A correct comment comparing their value of r and the scatter diagram in context				