

Mark Scheme (Results)

Summer 2013

GCE Chemistry 6CH05/01 General Principles of Chemistry II

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications. Alternatively, you can get in touch with us using the details on our contact us page at

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA035576 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) Ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) Select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) Organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- Examples of responses that should NOT receive credit.

/ Means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

Ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

• write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

• select and use a form and style of writing appropriate to purpose and to complex subject matter

• Organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question Number	Correct Answer	Mark
1	С	1

Question Number	Correct Answer	Mark
2	D	1

Question Number	Correct Answer	Mark
3	A	1

Question Number	Correct Answer	Mark
4	С	1

Question Number	Correct Answer	Mark
5	С	1

Question Number	Correct Answer	Mark
6	С	1

Question Number	Correct Answer	Mark
7	A	1

Question Number	Correct Answer	Mark
8	D	1

Question Number	Correct Answer	Mark
9	D	1

Question Number	Correct Answer	Mark
10	D	1

Question Number	Correct Answer	Mark
11	Α	1

Question Number	Correct Answer	Mark
12	В	1
Question Number	Correct Answer	Mark
13	В	1

Question Number	Correct Answer	Mark
14	D	1

Question Number	Correct Answer	Mark
15	В	1

Question Number	Correct Answer	Mark
16	В	1

Question Number	Correct Answer	Mark
17	В	1

Question Number	Correct Answer	Mark
18	A	1

Question Number	Correct Answer	Mark
19	В	1

Question Number	Correct Answer	Mark
20	С	1

Total for Section A = 20 Marks

Section **B**

Question Number	Acc	eptable Answers		Reject	Mark
21(a)		Half-equation	<i>E</i> ° / V		2
			+0.4(0) +1.23	+2.46	
	(1) Pen	for each correct value alise omission of + once	only		

Question Number	Acceptable Answers	Reject	Mark
21(b)(ii)	 1 atm / 100 kPa / 101 kPa /1 bar 	Wrong pressure units	2
	 1 mol dm⁻³ ([H⁺] / [HCI]) ALLOW `1 molar' / `1M' 	Incorrect concentration units (eg `1 mol' / 1 mol ⁻¹ dm ³ for [H ⁺])	
	• 298 K / 25 °C ALLOW "°K"	273 K / 0°C / `room temperature'	
	All THREE conditions correct = 2 marks		
	Any TWO conditions correct = 1 mark		
	IGNORE References to 'standard conditions' References to Pt/catalyst		
	ALLOW 0.5 mol dm ⁻³ H ₂ SO ₄ INSTEAD of the 1 mol dm ⁻³ ([H ⁺] / [HCl])		

Question Number	Acceptable Answers	Reject	Mark
21(c)	First mark: Mentions / some evidence for the use of BOTH equations 1 AND 3 from the table in any way, even if reversed or left unbalanced eg $O_2(g) + 2H_2O(I) + 4e^- \rightarrow 4OH^-$ (aq) AND $4OH^-(aq) + 2H_2(g) \rightarrow 4H_2O(I) +$ $4e^-$ (1) ALLOW \rightleftharpoons for \rightarrow	Equations involving H ⁺	2
	Second mark: (Adds the above half-equations cancelling 4e ⁻ to get)		
	$2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$	If $e^- / OH^- / H^+ / two$ surplus H ₂ O molecules remain in this final equation (0) for 2nd mark	
	OR		
	$ \begin{array}{ll} H_2(g) \ + \ \frac{1}{2}O_2(g) \ \rightarrow H_2O(I) & \mbox{(1)} \\ ALLOW \\ \rightleftharpoons \ \mbox{for} \ \rightarrow \\ \mbox{but must have} \ H_2 \ \mbox{and} \ O_2 \ \mbox{on left} \end{array} $		
	Mark the second scoring point independently		
	Award this mark if the correct equation is seen, no matter how it is derived		
	ALLOW MULTIPLES OF EQUATIONS IN ALL CASES		
	IGNORE any state symbols, even if incorrect		
	ALLOW equilibrium sign		

Question Number	Acceptable Answers	Reject	Mark
21(d)	$E_{\text{cell}}^{\Theta} = +0.40 - (-0.83) (V)$ = (+)1.23 (V)	-1.23 (V)	1
	+ sign NOT required in final answer		
	Correct answer with or without working scores (1)		
	No ECF from any incorrect <i>E</i> ^e values used		

Question Number	Acceptable Answers	Reject	Mark
21(e)	Reaction / equation is the same OR Reaction / equation for both is $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$ ALLOW \Rightarrow for \rightarrow IGNORE state symbols even if incorrect ALLOW statements such as 'they both produce water from hydrogen and oxygen' / 'reactants and products are the same' ALLOW multiples of the equation	'Electrode potentials don't change' Just same product / water is produced Just same reactants are oxidized and reduced Same reaction but in reverse scores (0)	1

Question	Acceptable Answers	Reject	Mark
Number			
21(f)	To increase the surface area /to		1
	increase the number of active sites		

Question	Acceptable Answers	Reject	Mark
Number			
21(g)	Storage (problems)		1
	OR , , , , , , , , , , , , , , , , , , ,		
	hydrogen / oxygen / the gases have		
	to be stored under pressure		
	UK Leakage (of hydrogen / of oxygen /of		
	cas)		
	OR		
	Transport(ation) problems		
	OR		
	Hard to carry / lack of portability		
	OR		
	Hydrogen flammable / inflammable OR		
	Hydrogen explosive	'Fuel cell can only be used	
	OR	once' scores (0)	
	(Fuel cell) costly / expensive OR		
	Needs (regular) re-filling OR		
	Needs continual replenishment of H ₂		
	and O ₂		
	OR		
	Lack of availability (of hydrogen / fuel) OR		
	Hydrogen is made from fossil fuels /		
	hydrogen is made by electrolysis /		
	hydrogen is made from Natural Gas /		
	hydrogen is made from non-renewable		
	resources		
	ALLOW water is a Greenhouse gas /		
	Fuel cell(s) have short(er) life-span /		
	Fuel cells have to be (regularly)		
	replaced		
	IGNORE references to just 'danger' or just 'safety' or just 'hazardous'		
	Any arguments in terms of voltage output		
	References to cannot be recharged		

Total for Question 21 = 12 Marks

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	Addition / reduction / free-radical addition IGNORE references to `hydrogenation'	<pre>`redox' `electrophilic addition' `nucleophilic addition'</pre>	1

Question Number	Acceptable Answers	Reject	Mark
22(a)(ii)	First mark: Delocalization (of π/p electrons in benzene ring)(1)IGNORE reference to `resonance'Second mark:		2
	Results in more energy needed to break the bonds in benzene (compared with three separate π bonds) (1)		
	ALLOW confers stability on the molecule / makes benzene more stable (than expected)		
	IGNORE Reference to carbon-carbon bond lengths Values of any enthalpy changes		
	Mark the two points independently		

Question	Acceptable Answers	Reject	Mark
Number			
22(a)(iii)	$ \begin{array}{c} \overset{\operatorname{CH}_{2}}{\longrightarrow} & \overset{\operatorname{CH}_{2}}{\longrightarrow} & \overset{\operatorname{CH}_{2}}{\longrightarrow} & \overset{\operatorname{CH}_{3}}{\longrightarrow} \\ & & & & & & \\ & & & & & & \\ & & & & $		3
	(Δ <i>H</i> =) — 328 (kJ mol ⁻¹)		
	First mark: For "4"		
	Second mark: Product as above / correct skeletal formula of product		
	ALLOW Side chain written as $-C_2H_5$		
	Third mark : -328 (kJ mol ⁻¹)		
	ΝΟΤΕ		
	One H ₂ added showing a CQ correct product with only side chain reduced and cq $\Delta H = -120$ (kJ mol ⁻¹) scores (2)		
	Three H ₂ added showing a CQ correct product with only the benzene ring reduced and cq $\Delta H = -208 \text{ (kJ mol}^{-1} \text{) scores}$ (2)		
	Five H ₂ added with fully correct product drawn and $\Delta H = -448$ (kJ mol ⁻¹) scores (2)		
	Three and a half H ₂ added showing a fully correct product and $\Delta H = -268/-293(.3)(kJ mol^{-1})$ scores (2)		
	NOTE Mark scoring points independently		

Question Number	Acceptable Answers	Reject	Mark
22(b)(i)	Mark awarded for displaying		1

Question Number	Acceptable Answers	Reject	Mark
22(b)(ii)	Electrophilic substitution BOTH words needed		1
	and /or `Friedel-Crafts'		

Question Number	Acceptable Answers	Reject	Mark
22(b)(iii)	Friedel and Crafts BOTH names are needed for this		1
	mark		

Question Number	Acceptable Answers	Reject	Mark
22(b)(iv)	First mark: $C_6H_5COCI + AICI_3 \rightarrow C_6H_5CO^+ + AICI_4^-$ (1)		4
	+ can be anywhere on the C_6H_5CO in the equation for the first mark		
	+ H ⁺		
	$(AlCl_4^- + H^+ \rightarrow HCl + AlCl_3)$ NOTE: If ethanoyl chloride or any other acid chloride or the generic RCOCl is used instead of benzoyl chloride, no first mark can be awarded but the 2nd, 3rd and 4th marks can be awarded consequentially		
	Second mark : First curly arrow, as shown, to start from inside the hexagon to the correct C+ carbon (i.e. not to the benzene ring) Note the + must be on the C of the C=O/CO for this mark		
	Third mark: Intermediate correctly drawn		
	NOTE (1)		
	+ can be shown anywhere in the ring or at the C atom where electrophile is bonded. The 'horseshoe' in the intermediate to cover at least three carbon atoms		
	Fourth mark: Second curly arrow as shown from C— H bond to reform the ring, not from the H atom in this bond (1)		
	NOTE Products do not have to be shown nor the equation		
	for regeneration of the catalyst given		

Question Number	Acceptable Answers	Reject	Mark
22(b)(v)	Absorbs / reflects / blocks / protects from / shields against / uv (light/ radiation) IGNORE 'non-toxic' / references to IR	adsorbs uv light	1

Question Number	Acceptable Answers		Reject	Mark
22(c)(i)	Any TWO of the following (1) for identifying the bond by formula as shown and (1) for wavenumber in each matching pair			4
	UNITS are not requ	ired		
	Bond	Wavenumber range/wavenumber (cm ⁻¹)		
	C=C	1600 / 1580 / 1500 / 1450		
		All four values		
		needed		
		1/00 - 1680		
	С-Н	750 / 700		
		Both values needed		
	NOTE ALLOW Correct wavenumbe within the correct ra Mark identification of wavenumber indepe (eg a correct bond v or vice-versa, scores each case) IGNORE	r range, or any number nge, for C=O If the bond and the ndently with a wrong wavenumber, s one of the two marks in		
	nmr values / chemic	al shifts		

Question	Acceptable Answers	Reject	Mark
Number			
22(c)(ii)	$\begin{array}{c} X \\ Y \\ z \\ Y \\ Y$		2
	First mark		
	EITHER Identifies correctly the three different proton environments		
	ALLOW If the three different proton environments are only shown on one of the benzene rings		
	NOTE On right-hand ring, clockwise from C=O, positions 2, 3 and 4 And /or 2,4 and 5 are shown as different environments and /or On left-hand ring, anti-clockwise from C=O, positions 2, 3 and 4 And /or 2,4 and 5 are shown as different environments		
	OR		
	Identifies proton Z correctly on both benzene rings (1)		
	Second mark Fully correct labelling both rings using the letters X, Y and Z		
	NOTE X and Y labels are interchangeable, Z is not (1)		

Total for Question 22 = 20 Marks

Question Number	Acceptable Answers	Reject	Mark
23(a)(i)	Lone pair (of electrons on the nitrogen atom) ALLOW non-bonded pair (of electrons on the nitrogen atom)	Lone pairs Spare pair	1

Question Number	Acceptable Answers	Reject	Mark
23(a)(ii)	(with H ₂ SO ₄)		2
	$(C_4H_9NH_3^+)_2SO_4^{2-}$ (1)		
	ALLOW		
	$C_4H_9NH_3^+HSO_4^-$		
	(with CH₃COOH)		
	$C_4H_9NH_3^+CH_3COO^-$ (1)		
	CHARGES not essential		
	Cation and anion can be in either orde	er	
	Max (1) if formula of the amine is inc	orrect in either case	
	ALLOW (1) if only the correct cation is anion has been omitted in both cases	given in each case (i.e. the)	
	NOTE The correct ions can be shown separa Eg $(C_4H_9NH_3^+)_2 + SO_4^{2-}$	tely	

Question Number	Acceptable Answers		Reject	Mark
23(b)	Tin / Sn ALLOW Iron / Fe	(1)	LiAlH ₄	2
	(concentrated) hydrochloric acid		Just `HCI'	
	NOTE If they write 'HCI', there must be some indication of concentrated Eg 'conc HCI' / 'concentrated HCI'		`dilute' hydrochloric acid / sulfuric acid	
	ALLOW HCl(aq)			
	(Followed by addition of alkali to liberate the free amine)	(1)		
	Mark the two points independently			
	NOTE Do not allow 2 nd mark if there is a suggestion that the acid and alkali added together simultaneously	are		

Question Number	Acceptable Answers	Reject	Mark
23(c)(i)	NOTE If the above structure is drawn, the + charge must be on the N connected directly to the bonzone ring.	N ₂ ⁺ on ring	1
	ALLOW $-N=N^+$ on ring IGNORE CI ⁻		

Question Number	Acceptable Answers	Reject	Mark
23(c)(ii)			1

Question Number	Acceptable Answers	Reject	Mark
23(c)(iii)	(Conditions) (Presence of) NaOH / KOH / alkali /OH ⁻ (1)		2
	ALLOW `Alkaline (conditions)' or `base' or `high pH'		
	IGNORE Any references to temperature		
	(Use) Dye / pigment / colouring / indicator / in foodstuff / in paint / methyl orange (1)		
	IGNORE Any reference to medicines		

Question Number	Acceptable Answers	Reject	Mark
23 (d)	$ \begin{array}{c} & & \\ & & $		2
	ALLOW The +sign to be on either N atom in the benezenediazonium ion		
	OR		
	$C_6H_5N_2^+$ + H_2O \rightarrow C_6H_5OH + N_2 + H^+		
	OR		
	$C_6H_5N_2CI + H_2O \rightarrow C_6H_5OH + N_2 + HCI$		
	OR		
	$C_6H_5N_2^+ + 2H_2O \rightarrow C_6H_5OH + N_2 + H_3O^+$		
	OR		
	$C_6H_5N_2^+CI^-$ + $H_2O \rightarrow C_6H_5OH$ + N_2 + HCI		
	NOTE $-C_6H_5$ can be written or drawn		
	First markfor N2(1)		
	Second markfor rest of the equation correct(1)		
	IGNORE State symbols, even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
23(e)(i)	(Otherwise) too much (product) remains in solution OR If excess (solvent) is used, crystals might not form ALLOW		1
	the filtrate when crystallization occurs) / 'to maximize the yield'/ 'will crystallize better from a concentrated solution'/ 'will recrystallize (better) when cold'		
	IGNORE References to a 'saturated solution' or references to 'dilution' or references to the time taken for crystals to form		

Question Number	Acceptable Answers	Reject	Mark
23(e)(ii)	(Insoluble impurities removed) By hot filtration / During the first filtration / During the second step in the process (1)		2
	(Soluble impurities removed) By remaining in solution / Left in filtrate / Removed when washed (with cold solvent) (1)		

Question Number	Acceptable Answers	Reject	Mark
23(e)(iii)	Measure the melting temperature / melting point and compare with data / known value (from a data book / literature / Internet /data base) (BOTH points needed for the mark) OR The melting point is sharp (Just this statement is needed for the mark) ALLOW Any form of chromatography IGNORE References to any types of spectroscopy	(0) if reference to determination of the boiling point is made	1

Total for Question 23 = 15 Marks

Question Number	Acceptable Answers	Reject	Mark
24(a)(i)	$\begin{array}{llllllllllllllllllllllllllllllllllll$		1

Question Number	Acceptable Answers	Reject	Mark
24(a)(ii)	Ti reduced as oxidation number decreases from +4 to 0 / changes from +4 to 0		2
	(1) Na oxidized as oxidation number increases from 0 to +1 /changes from 0 to +1		
	(1)		
	ALLOW Correct oxidation numbers only for one mark		
	NOTE Max (1) if no + sign included		
	ALLOW '4+' and/or '1+' given instead of +4 and +1		
	NOTE If any of the oxidation numbers are wrong, award max (1) for the idea that during oxidation the oxidation number increases AND during reduction the oxidation number decreases		
	IGNORE References to loss and /or gain of electrons		

Question Number	Acceptable Answers	Reject	Mark
24(b)	(Ti [Ar]) $3d^2 4s^2 / 4s^2 3d^2$ (1)		2
	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
	BOTH Ti ³⁺ and Ti ⁴⁺ correct for second mark		
	(1)		
	Mark CQ on Ti electron configuration for the second mark		
	ALLOW Upper case (e.g. 'D' for 'd' in electronic configurations) Subscripts for numbers of electrons		
	Full correct electronic configurations 1s ² , 2s ²		

Question Number	Acceptable Answers	Reject	Mark
24(c)(i)	<pre>(d-block element) EITHER Ti has (two) electrons in the 3d subshell / Ti has a partially filled d-subshell / Ti has a partially filled d-orbital / Ti has electrons in d-orbital(s) / Ti has electrons in d-subshell (During the build up of its atoms) last added / valence electron is in a d-subshell / d-orbital OR (During the build up of its atoms) last added / valence electron is in a d-subshell / d-orbital</pre>	Outer / highest energy electrons are in a d-orbital / Outer / highest energy electrons are in a d-subshell Electrons in the 'd-block'/ 'electrons in the d-shell'	1

Question Number	Acceptable Answers	Reject	Mark
24(c)(ii)	(transition element) Forms one (or more stable) ions / forms Ti³⁺ (ions) which have incomplete d-orbital(s) / an incomplete d-subshell / a partially filled d-subshell / an unpaired d electron IGNORE		1
	References to variable oxidation states		

Question Number	Acceptable Answers	Reject	Mark
24(d)(i)	First mark: d-subshell splits /d-orbitals split (in energy by ligands) /d energy level(s) split(s) (1)	d- orbital / d- shell splits	3
	Second mark: absorbs light (in visible region) (1)	absorbs purple light	
	Third mark:		
	Electron transitions from lower to higher energy / electron(s) jump from lower to higher energy		
	OR		
	Electron(s) promoted (within d)		
	Mark independently		
	NOTE Maximum of (1) mark (i.e. the first mark only) if refers to electrons falling back down again		

Question Number	Acceptable Answers	Reject	Mark
24(d)(ii)	No d-electrons / empty d-subshell		1

Question Number	Acceptable Answers	Reject	Mark
24(e)(i)	TiO ₂ `Structure' mark		4
	EITHER		
	Giant (structure) OR Lattice (structure)	TiO ₂ (small) molecule s / simple molecular	
	IGNORE Whether stated as ionic or covalent for this mark (1)		
	TiO₂ `Bonding′ mark		
	EITHER		
	Strong (electrostatic) attraction between ions		
	ALLOW Strong ionic bonds / ionic bonds require a lot of energy to break		
	OR		
	Strong covalent bonds/covalent bonds require a lot of energy to break (1)	For TiO_2 mention of any type of intermolecular forces between molecules of TiO_2	
	TiCl₄ `Structure' mark		
	(Simple) molecules / (small) molecules / molecular (1)	TiCl₄ giant structure	
	TiCl₄ 'Bonding' mark Weak London / dispersion / van der Waals' forces (between molecules) /	Covalent bonds broken (on melting) in TiCl ₄ Ionic bonding in TiCl ₄	
	London /dispersion / van der Waals' forces (between molecules) require little energy to break	Hydrogen bonding (0) for this mark	

NOTE	
If candidates assumes TiO_2 and $TiCl_4$ are both simple molecular, can score last mark for saying that the named intermolecular forces in TiO_2 are stronger that those in $TiCl_4$	
IGNORE	
(Permanent) dipole-dipole forces	
(1) Mark the four scoring points independently	

Question Number	Acceptable Answers	Reject	Mark
24(e)(ii)	Amphoteric		1
	Recognisable spellings		

Question Number	Acceptable Answers	Reject	Mark
24(e)(iii)	TiO ₂ + 2H ₂ O + 2KOH → K ₂ Ti(OH) ₆ OR TiO ₂ + 2H ₂ O + 2OH ⁻ → Ti(OH) ₆ ²⁻ IGNORE state symbols even if incorrect		1

Question Number	Acceptable Answers	Reject	Mark
24(e)(iv)	$\begin{array}{c c} H \\ H \\ \hline C \hline \hline C \hline \hline C \\ \hline C \hline \hline$	Two (or more) repeat units shown	1
Question	Acceptable Answers	Reject	Mark

Question	Acceptable Answers	Reject	Mark
24(f)(i)	$(H_2O_2 + 2H^+ +) 2e^{(-)} \rightarrow 2H_2O$		1
	BOTH $2e^{(-)}$ and $2H_2O$ needed for the mark		

Question	Acceptable Answers	Reject	Mark
Number			2
24(1)(11)	(Moles $H_2 O_2 = 0.0200 \times 22.50$		3
	$=)45 \times 10^{-4} \text{ mol } \text{H}_{2}\text{O}_{2}$		
	(1)		
	(-)		
	(Moles Ti ³⁺		
	reacting in		
	25.0 cm ³) = 9.0 x 10^{-4} mol Ti ³⁺		
	2.		
	(Moles Ti ³⁺		
	$(n 250 \text{ cm}^3) = 9.0 \times 10^{-3} \text{ mol } 10^{-3}$		
	(1)		
	(Original concentration of Ti ³⁺		
	$= 9.0 \times 10^{-3}$		
	0.00500		
	=) 1.8 (mol dm ⁻³)		
	(1)		
	1.8 (moi dm ^o) with or without		
	working scores (3)		
	NOTES		
	If mole ratio		
	H_2O_2 : Ti ³⁺ is 1:1		
	final answer for concentration of Ti ³⁺		
	is 0.9 (mol dm ^{-3}) scores (2) overall		
	If mole ratio		
	H_2O_2 : Ti ³⁺ is 2:1		
	final answer for concentration of Ti ³⁺		
	is 0.45 (mol dm ^{-3}) scores (2) overall		
	If candidate forgets to multiply not of		
	moles of Ti^{3+} by 10 then answer is		
	0.18 (moldm-3) this scores (2)		
	If volume of H_2O_2 used is 25.0 no first		
	mark, but can score (2) if final answer		
	CQ is 2(.0) (mol dm ⁻³)		

Question Number	Acceptable Answers	Reject	Mark
24 (f)(iii)	(It/titanium(III)/Ti ³⁺) oxidized (by oxygen in the air) ALLOW 'It is a strong reducing agent'	Hydrolysis	1

Total for Question 24 = 23 Marks

Total for Paper = 90 Marks

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA035576 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

6CH05_01 13_06