

GCE

Chemistry A

Unit F324: Rings, Polymers and Analysis

Advanced GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2015

Annotations available in Scoris.

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
^	Omission mark
RE	Rounding error
SF	Error in number of significant figures
 Image: A start of the start of	Correct response

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument
ORA	Or reverse argument

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text:

1(c)(ii), 2(a)(i), 2(d)(ii), 3(b) and 4(d)

C	Questi	ion	Answer	Mark	Guidance
1	(a)		(Relative) solubility (in stationary phase) ✓	1	ALLOW how well the compound dissolves IGNORE retention time AND partition DO NOT ALLOW adsorption OR absorption
	(b)	(i)	Compound B AND M ⁺ /molecular ion peak (at m/z) = 124 \checkmark	1	ALLOW Mr = 124 IGNORE compound B because $m/z = 124$ ALLOW $C_7H_8O_2^+ = 124$ OR $C_7H_8O_2 = 124$ ALLOW peak at (m/z =) 109 due to HOC ₆ H ₄ O ⁺ ALLOW peak at (m/z =) 109 due to loss of CH ₃ IGNORE reference to other peaks in the spectrum
		(ii)	Compound (B) is less soluble in the stationary phase/ liquid	1	ORA Answer refers to the first compound to emerge from the column ALLOW compound (B) is more soluble in mobile phase/gas ALLOW compound interacts less with stationary phase/liquid OR compound interacts more with mobile phase/gas IGNORE compound adsorbs less IGNORE compound is not very soluble (comparison needed) IGNORE volatility OR reactivity

Questio	on	Answer	Mark	Guidance
(c)	(i)	reagent = $K_2Cr_2O_7$ AND H_2SO_4 \checkmark	3	ALLOW acidified dichromate
				ALLOW H⁺/any acid
				IGNORE concentration of acid
				ALLOW Na ₂ Cr ₂ O ₇ /Cr ₂ O ₇ ²⁻ /(potassium OR sodium) dichromate((VI))
				ALLOW acidified MnO4
				ALLOW Tollens' reagent/ammoniacal silver nitrate
				IGNORE conditions
		compound $C = CH_2OH$		ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
				ALLOW ECF from incorrect compound C Check positions of OH groups
		✓ `OH ✓		ALLOW esterification of phenol group
		ester =	_OH H ↓	CH2OH COO COO OH

F324

Question	Answer	Mark	Guidance
(ii)	curly arrow from H^- to C^{δ^+}	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC curly arrow must come from lone pair on H or negative charge on H
	dipole AND curly arrow from C=O bond to O \checkmark		curly arrow must come from the bond, not the carbon atom
	correct intermediate AND curly arrow to $H^+ \checkmark$		curly arrow must come from lone pair on O or negative charge on O and go to H or positive charge on H
			Where circles have been placed round charges, this is for clarity only and does not indicate a requirement
			ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
	$\bigcirc \longrightarrow \bigcirc$		ALLOW for second stage
	✓ `ОН ✓ `ОН сн₂ОН		
			ОН
			IF H_2O is used it MUST show the curly arrow from the negative charge or lone pair on the oxygen atom of the intermediate to H in H_2O AND from the O—H bond to the O in H_2O . Dipole not required on water molecule
			Penalise missing –OH on intermediate only
			IGNORE product – already given credit in part (i)

C	Questi	on	Answer	Mark	Guidance
	(d)		OCH_3 OH OH OH OH OH OH OH OH	1	 ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW disubstitution at any positions on benzene ring
			Total	10	

F324

G	uesti	on	Answer	Mark	Guidance
2	(a)	(i)		4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
			M1 p-orbitals overlap (to form pi/ π -bonds) \checkmark		IGNORE p-orbitals overlap to form sigma bonds
			M2 π -bond(s) are <u>delocalised</u> in structure B \checkmark		ALLOW electrons are delocalised in structure B IGNORE B has delocalised structure or ring (must be electrons or π -bonds)
			M3 $$\pi$-bonds are localised/between two carbons in structure A \checkmark$		ALLOW π -electrons/p-orbital overlap localised/between two carbons in structure A ALLOW p-orbitals overlap with one other carbon IGNORE electrons are localised OR structure A has localised structure (must be π -bonds/ π -electrons/p-orbital overlap) ALLOW labelled diagram showing overlap of p-orbitals between two carbon atoms DO NOT ALLOW C=C in this diagram
			M4		Diagram for structure A must show the full ring for M4 IGNORE C=C in M4 diagram
			Diagrams show correct position of delocalised and		IGNORE charge density
			localised π-bonds/π-electrons		DO NOT ALLOW electronegativity
			OR correct position of p-orbital overlap ✓		Structures do not need to be labelled A and B if the description matches the structure
			requires delocalised/delocalized spelled correctly and used in correct context		

G	uestio	n	Answer	Mark	Guidance
		(ii)	structure B/delocalised structure is (more) stable	2	ALLOW structure B is low in energy
			\checkmark		IGNORE structure B is less reactive
			structure B is a better because (enthalpy change of hydrogenation for benzene is) less		ALLOW enthalpy change/hydrogenation for benzene is less (negative) than $3 \times (-)119$
			(exothermic) than (-) 357 (kJ mol ⁻¹)		IGNORE more positive than (-)357 kJ mol ⁻¹
					ALLOW enthalpy change is less than 3x enthalpy change for cyclohexene
					ALLOW structure B is more stable by 149 kJ mol ⁻¹ (2 marks)
					DO NOT ALLOW more/less energy needed for the reaction
					Answer must refer to data given in the question and must be a comparison
					IGNORE 360 kJ mol ⁻¹
					No marks can be awarded if structure A is selected
	(b)			2	
					First curly arrow must come from bond not from C atom
			curly arrow from C–N bond to N^+ 🗸		ALLOW first curly arrow to nitrogen atom OR to positive charge on nitrogen atom
					ALLOW second curly arrow from negative charge on fluoride ion
			curly arrow from lone pair on fluoride ion to positive charge on benzene ring \checkmark		ALLOW second curly arrow to carbon atom with positive charge

G	Questi	on	Answer	Mark	Guidance
	(c)		$(CH_3)_2CHBr + FeBr_3 \longrightarrow (CH_3)_2CH^+ + FeBr_4^-$	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
					ALLOW positive charge anywhere on the electrophile
					IGNORE AICI ₃ OR AIBr ₃
	(d)	(i)	First reactant = $HNO_2 \checkmark$	3	ALLOW NaNO ₂ + HCI OR HNO ₂ + HCI
					IGNORE conditions/concentration
			Second reactant =		
			Br Br NH ₂		ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
			_	/	
			Third reactant =		ALLOW
					О
			ОС он 🗸		

Question	Answer	Mark	Guidance
(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 1.35 (g) award 3 marks IF answer = 0.54 (g) award 2 marks (no scale-up) IF answer = 0.216 (g) award 2 marks (incorrect scale-up) <i>n</i> (compound D) = 1.73/346 = 0.00500 mol \checkmark <i>n</i> (1,3-diaminobenzene) required = 100/40 x 0.005 = 0.0125 mol \checkmark Molar mass of 1,3-diaminobenzene = 108 (g mol ⁻¹) AND Mass of 1,3-diaminobenzene = (108)(0.0125) = 1.35 g \checkmark	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC If there is an alternative answer, check to see if there is any ECF credit possible ALLOW ECF from incorrect amount, scale-up or molar mass Alternative 1 n(compound D) = $1.73/346 = 0.00500$ mol Molar mass of 1,3-diaminobenzene = 108 (g mol ⁻¹) AND Mass of 1,3-diaminobenzene = $(0.00500)(108) = 0.540$ g Mass of 1,3-diaminobenzene required = $(0.540)(100/40) =$ 1.35 g Alternative 2 346 g gives 108 g 1.73 g gives 108/364 x 1.73 = 0.54 g 0.54/40 x 100 = 1.35 g
(iii)	(compound D has) two chiral centres ✓	3	ALLOW (Compound D) has two asymmetric carbons OR has two stereocentres
	Four optical isomers exist ✓		ALLOW four enantiomers OR two pairs of enantiomers
	(Synthesis could) use enzymes OR bacteria OR use (chemical) chiral synthesis OR <u>chiral</u> catalysts OR use natural chiral molecules OR single isomers (as starting materials) ✓		INDEPENDENT MARK ALLOW biological catalysts ALLOW <u>chiral</u> transition metal complex/catalyst OR <u>stereoselective</u> transition metal complex/catalyst ALLOW ' <u>chiral</u> pool'/chiral auxiliary
	Total	18	

June 2015

Q	Question		Answer	Mark	Guidance
3	(a)	(i)		3	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
			I I ` H NH₂ ONa		ALLOW —O ⁻ Na ⁺ OR —O ⁻ (cation not required)
					DO NOT ALLOW —O—Na (covalent bond)
					DO NOT ALLOW –O (without the sodium)
					ALLOW delocalised carboxylate
			HO - C - C - C - C - C + HO - C - C - C - C + HO - C - C - C + HO - C + 2 -		
			$NH_{3^{+}}$ in second product \checkmark		
		(ii)	perfume/fragrance/flavouring 🗸	1	IGNORE solvent OR food additive
		(iii)	Reaction 3: (hot) ethanolic ammonia 🗸	3	ALLOW NH ₃ (dissolved) in ethanol
					IGNORE other conditions
			Reaction 4: oxidation 🗸		ALLOW oxidisation/oxidised
					DO NOT ALLOW redox
			Reaction 5: hydrolysis ✓		ALLOW nucleophilic addition-elimination
					DO NOT ALLOW nucleophilic substitution
					IGNORE acid/base

Question	Answer	Mark	Guidance
(b)	M1 Compound E	6	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
	H H H H H H H H H H H H H H H H H H H		ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
	$H_2C = C - C - CHO$		Labels are not required for compound E, F, G or H
	NH ₂		IGNORE labels for M1, M2, M3 and M4
	\checkmark		CH ₂ =CH must be shown in E
	M2 Compound F		ALLOW C_2H_3 OR CHCH ₂ for CH=CH ₂ in F
	H H H H H H H H H H C = C - C - C - C - C - C - C - C - C -		ALLOW ECF from error in structure of <u>aldehyde</u> E
	\checkmark		ALLOW multiple repeat units but must be full repeat units
	M3 Compound G		ALLOW end bonds shown as
			DO NOT ALLOW if structures have no end bonds
	$ \begin{array}{c c} - & - & - & - \\ - & - & - & - \\ - & - &$		IGNORE brackets unless they are used to pick out the repeat unit from a polymer chain
			IGNORE n
	соон		ALLOW C ₂ H ₄ NO ₂ for CH(NH ₂)COOH in polymer G
	✓		ALLOW C_2H_3 OR CHCH ₂ for CH=CH ₂ in polymer H
	M4 Compound H $ \begin{bmatrix} H & O \\ & \\ - & -C & -C \\ & -C & -C \\ - & -C & -C & -C \\ - & -C & -C & -C \\ - & -C & -C & -C & -C \\ - & -C & -C & -C & -C & -C \\ - & -C & -C & -C & -C & -C & -C \\ - & -C \\ - & -C & $		ALLOW ECF from $NH_2CH_2CH=CHCOOH$ for the formation of compound G or compound H
	\checkmark		

F324

F324

Q	Question		Answer	Mark	Guidance
	(d)	(i)	Ester AND amide ✓	1	ALLOW peptide for amide
		(ii)	0 0	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
					Functional groups do not need to be fully displayed
			HO OH		ALLOW structures as shown; the O-H bond and the N-H bonds in the functional groups do not need to be displayed
			CH ₃		DO NOT ALLOW -COOH
					ALLOW
			$H_2N \longrightarrow C \longrightarrow CH_2OH$ $H_2N \longrightarrow CH_3 \qquad \checkmark$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
					Penalise incorrect connectivity to OH once in this question
		(iii)	(The molecule/amide/ester) can be <u>hydrolysed</u> ✓	1	ALLOW (the molecule/amide/ester) can form hydrogen/H- bonds <u>with water</u> IGNORE acid/base
			Total	20	

G	Question		Answer	Mark	Guidance
4	(a)		magnetic resonance imaging/providing diagnostic information/body scanners. ✓	1	ALLOW MRI/scanning internal structures e.g. brain ALLOW detection of tumours/cancer/haemorrhage/aneurysm IGNORE reference to drugs, chemicals or functional groups IGNORE analysis of blood DO NOT ALLOW CT scan/CAT scan
	(b)	(i)	Radio (waves) 🗸	1	ALLOW a value in the range 60 – 900 MHz
		(ii)	The solvent does not have any hydrogen/H/protons 🗸	1	 ALLOW to prevent (¹H nuclei from) the solvent from interfering with the NMR spectrum ALLOW does not show on the spectrum ALLOW no peak/signal (from solvent) IGNORE volatility
4	(c)		14 🗸	1	
	(d)		NMR analysis (5 marks) M1 Peaks between (δ) 7.1 and 7.5 (ppm) OR Relative peak area of 7 OR Multiplet = $\int \int $	7	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IGNORE analysis of ¹³ C spectrum Each peak can be identified from its δ value \pm 0.2 ppm ALLOW (seven) benzene ring protons OR aromatic protons DO NOT ALLOW benzene ring without reference to protons ALLOW C ₆ H ₆ IGNORE

Question	Answer	Mark	Guidance
	OR Relative peak area of 1 = N-H ✓		IGNORE O-H, CONH AND C=CH
	M3 Peak at 2.3/2.4 OR Relative peak area of 2 OR Quartet = OR $C_6H_5CH_2 \checkmark$		ALLOW quadruplet IGNORE CHC=O AND HC-N
	M4 Peak at 0.7/0.8 OR Triplet = R-CH OR R-CH ₃ ✓		DO NOT ALLOW triplet = $CH_3 OR CH_2CH_3$
	M5 Triplet (at δ 0.7) AND quartet (at δ 2.3) = CH ₂ CH ₃ OR triplet at (δ) 0.7 shows (C with) 2 adjacent Hs/protons = CH ₂ CH ₃ OR quartet (at δ 2.3) shows (C with) 3 adjacent Hs/protons = CH ₂ CH ₃ \checkmark		This also scores M4 if triplet is linked to $R-CH_3$ ALLOW CH_3CH_2 described as $R-CH_3$ and 2 adjacent H OR $-CH_2$ - and 3 adjacent H The information can be presented on the spectrum or in a table.

F324

Question	Answer	Mark	Guidance				
			7 7 1 1			HC-C=N- R-CH 3 2 2 2 1 0	
			Chemical shift/ppm	Relative peak area	Splitting pattern	Type of proton	
			7.1 – 7.5	7	Multiplet	<u>O</u>	
			5.3	1	Singlet	N-H	
			2.3/2.4	2	Quartet	CH CH	
			1.7/1.8	3	Singlet	HC-C=N-	
			0.7/0.8	3	triplet	R-CH/R-CH ₃	
	QWC: triplet or quartet spelled correctly in the correct context for M5		IGNORE peak information is g H ₃ C-C=N- sco (see below)	in the range 1 jiven in the qu res one mark	.6–2.2 = HC–C estion. for the identific	C=N- because this ation of R ¹ or R ²	

June 2015

Q	Question		Answer	Mark	Guidance
	(e)		Carbonyl compound K	1	ALLOW ECF from incorrect compound L
			H ₃ C C==0		Must be a correct carbonyl structure
			CH ₃ CH ₂		
			\checkmark		
			Total	12	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.gualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

© OCR 2015