Version 1.0



General Certificate of Education (A-level) June 2013

## Physics B: Physics in Context

PHYB4

(Specification 2455)

**Unit 4: Physics inside and out** 

## Final



Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

## Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

| Question | Part | Sub   | Marking guidance                                                 |          | Guidance notes                                                                                                                                                                                                     |
|----------|------|-------|------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |      |       |                                                                  |          |                                                                                                                                                                                                                    |
|          |      |       | Use of <i>F – GMm/r<sup>2</sup></i>                              | C1       | Allow 1 for<br>-correct formula quoted but forgetting<br>square in substitution                                                                                                                                    |
| 1        | (a)  | (i)   | Correct substitution of data                                     | M1       | -missing <i>m</i> insubstitution                                                                                                                                                                                   |
|          |      |       | 491 (490)N                                                       | A1       | -substutution with incorrect powers of 10                                                                                                                                                                          |
|          |      |       |                                                                  |          | Condone 492 N,                                                                                                                                                                                                     |
|          |      | 1     |                                                                  | D4       |                                                                                                                                                                                                                    |
|          |      |       | Up and down vectors shown (arrows at end) with labels            | B1       | allow <i>W, mg</i> (not gravity); <i>R</i><br>allow if slightly out of line/two vectors<br>shown at feet                                                                                                           |
|          |      |       | up and down arrows of equal lengths                              | B1       | condone if colinear but not shown acting<br>on body                                                                                                                                                                |
| 1        | (a)  | (ii)  |                                                                  |          | In relation to surface $W \le R$ (by eye) to<br>allow for weight vector starting in middle<br>of the body<br>Must be colinear unless two arrows<br>shown in which case R vectors $\frac{1}{2}$ W<br>vector(by eye) |
|          |      |       |                                                                  |          |                                                                                                                                                                                                                    |
|          | (1.) |       | Speed = $2\pi r/T$                                               | B1       | Max 2 if not easy to follow                                                                                                                                                                                        |
| 1        | (b)  | (i)   | $2\pi 6370000/(24 \times 60 \times 60)$<br>463 m s <sup>-1</sup> | B1<br>B1 | Must be 3sf or more                                                                                                                                                                                                |
|          |      |       | 405 11 5                                                         | DI       | Must be 5si of more                                                                                                                                                                                                |
| 1        | (b)  | (ii)  | Use of $F = mv^2/r$                                              | C1       | Allow 1 for use of $F = mr\omega^2$ with $\omega = 460$                                                                                                                                                            |
| I        | (0)  | (")   | 1.7 (1.66 – 1.68) N                                              | A1       |                                                                                                                                                                                                                    |
|          |      |       | Correct direction shown                                          | B1       |                                                                                                                                                                                                                    |
| 1        | (b)  | (iii) | (Perpendicular to and toward the axis of rotation)               |          |                                                                                                                                                                                                                    |
|          | ~ /  |       | NB – not towards the centre of the earth                         |          |                                                                                                                                                                                                                    |

|   |     |       |                                                                                                                  | 01 |                                           |
|---|-----|-------|------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------|
|   |     |       | Force on scales decreases/apparent weight decreases<br>Appreciates scale reading = reaction force                | C1 |                                           |
| 1 | (c) |       | The reading would become 489 (489.3)N or reduced by 1.7 N)                                                       | A1 |                                           |
|   |     |       | Some of the gravitational force provides the necessary centripetal force                                         | B1 | or $R = mg - mv^2/r$                      |
|   |     |       |                                                                                                                  |    |                                           |
| 2 | (a) | (i)   | At infinity gravitational potential is zero                                                                      | C1 |                                           |
| 2 | (a) | (1)   | 12.6 MJ is needed for each kg moved to get to infinity (OWTTE)                                                   | A1 |                                           |
|   |     |       | Use of ratios (inverse <i>r</i> law attempt) or 6.32 MJ kg <sup>-1</sup>                                         | C1 |                                           |
| 2 | (a) | (ii)  |                                                                                                                  | 01 | Alternative: attempt to calculates mass o |
| _ | (4) | ()    | −6.32 MJ kg <sup>-1</sup>                                                                                        | A1 | Mars and use to find $V$                  |
|   |     |       |                                                                                                                  |    |                                           |
| 2 | (b) | (i)   | No change in gravitational PE/still on same equipotential<br>No work done moving along the equipotential surface | B1 | PE is the same                            |
|   |     |       | -                                                                                                                | _  |                                           |
|   |     |       | KE At D = $1.143$ GJ (Allow substitution in formula)                                                             | B1 |                                           |
| 2 | (b) | (ii)  | Change in gravitational PE = 850 × 1.04 MJ= 0.884GJ                                                              | B1 |                                           |
| 2 | (0) | (1)   | Total energy at B = $1.143 + 0.884$ (GJ) = $2.027$ GJ<br>Speed at B = $2190 \text{ m s}^{-1}$                    | B1 |                                           |
|   |     |       | Speed at B = $2190 \text{ m s}^{-1}$                                                                             | B1 |                                           |
|   |     |       | Angular momentum $L = I \omega$ and $\omega = v/r$                                                               | B1 |                                           |
| 2 | (b) | (iii) | Combine so $L = mr^2 \times v/r = mvr$                                                                           | B1 |                                           |
| £ |     | ()    | m is constant so if $vr$ is constant then L is constant                                                          | B1 | Allow demonstration using data            |
|   |     |       | <u> </u>                                                                                                         | _  |                                           |
| 2 | (b) | (iv)  | There is no external torques/force acting on the satellite                                                       | B1 |                                           |

| 2 | (c) | (i)  | $mr\omega^{2} \text{ or } \frac{mv^{2}}{r} = \frac{GMm}{r^{2}} \text{ or } v = \frac{2\pi r}{T}$ Use of period = 24.6 × 60 × 60 (8.86 × 10 <sup>4</sup> s) or $\omega$ =7.09x10 <sup>-5</sup> (rad s <sup>-1</sup> )<br>Correct substitution of data<br>$(r^{3} = \frac{6.7 \times 10^{-11} \times 6.4 \times 10^{23}}{4 \times 3.14^{2}})(8.86 \times 10^{4})^{2} \text{ or } r^{3} = \frac{6.7 \times 10^{-11} \times 6.4 \times 10^{23}}{(7.09 \times 10^{-5})^{2}}$ 2.04 × 10 <sup>7</sup> m (20 400 km) | C1<br>C1<br>C1<br>A1 | Condone 1 sf                                                                                        |
|---|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------|
| 2 | (c) | (ii) | Use of $\Delta E_p = GMm \left[ \frac{1}{r_1} - \frac{1}{r_2} \right]$<br>Correct substitution or 10.4 MJ (per kg)<br>8.9(3) GJ                                                                                                                                                                                                                                                                                                                                                                              | C1<br>C1<br>A1       | Allow ecf from (c)(i)<br>Condone incorrect powers of 10<br>Condone use of formula for energy per kg |
| 3 | (a) | (i)  | correct period read from graph or use of $f=1/T 0.84\pm0.01$<br>correct frequency 1.2 (1.18– 1.25 to 3 sf)                                                                                                                                                                                                                                                                                                                                                                                                   | C1<br>A1             | 2.4 Hz gets C1                                                                                      |
| 3 | (a) | (ii) | correct shape (inverse)<br>Crossover PE = KE                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B1<br>B1             |                                                                                                     |
| 3 | (b) | (i)  | Use of $T = 2\pi \sqrt{\frac{l}{g}}$<br>48.7 (49) m                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C1<br>A1             |                                                                                                     |

| 3 | (b) | (ii)  | $v = 120\ 000/3600 = \ 33(.3)\ m\ s^{-1}$<br>Use of $F = mv^2/r$ (allow v in km h <sup>-1</sup> )<br>Total tension = 6337 + (280 ×9.81) = 9.083×10 <sup>3</sup> N<br>Allow their central force<br>Divide by 4 2.27 × 10 <sup>3</sup> N<br>Allow their central force | B1<br>B1<br>B1<br>B1 |                                                                                                                                                                                                             |
|---|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | (b) | (iii) | $mgh = \frac{1}{2} mv^2$ $9.8 \times 44 = 0.5 v^2$ Allow 45 in substitution $29.4 \text{ m s}^{-1}$ (Use of 45 gives 29.7) $106 \text{ km h}^{-1}$ (their m s $^{-1}$ correctly converted)Or compares with 33 m s $^{-1}$                                           | B1<br>B1<br>B1<br>B1 | Condone:Use of $v = 2\pi fA$ (max2)Condone22 m s <sup>-1</sup>                                                                                                                                              |
| 3 | (b) | (iv)  | 1/16 <sup>th</sup> (0.625) % of KE left if correct<br>KE at start = 5.6 x 10 <sup>4</sup> J or states energy $\infty$ speed <sup>2</sup> so speed is ¼<br>Final speed calculated = 5 m s <sup>-1</sup>                                                              | M1<br>M1<br>A1       | Allow 1/8 (0.125)or 1/32(0.313)<br>Allow for correct sub <sup>n</sup> $E = \frac{1}{2} 280 \times 20^2 x$<br>factor from incorrect number of swings<br>calculated correctly<br>Must be from correct working |
| 4 | (a) | (i)   | Attempt to use Pythagoras' theorem using 4700 and 1200 $4850 \text{ m s}^{-1}$ (3sf only)                                                                                                                                                                           | C1<br>A1             | Allow final speed close to 1200                                                                                                                                                                             |
| 4 | (a) | (ii)  | Change in direction given by tan $\theta$ = 1200/4700 14(.3)°                                                                                                                                                                                                       | C1<br>A1             | Method may use data from 4(a)(i)<br>Allow C1 for 75.7°                                                                                                                                                      |
| 4 | (b) |       | Attempt to find area under the graph<br>Count squares = $55 \pm 2$ or distance per square = 400 m<br>22 km (21.2 km $\rightarrow$ 22.8 km)                                                                                                                          | B1<br>B1<br>B1       | Allow 1 for thinking the graph is linear<br>(gets 24 km)                                                                                                                                                    |

| 4 | (c) | (i)  | Substitution of final speed and fuel ejection speed correct in rocket equation<br>$1200 = 2500 \ln (3500/m_f)$<br>$m_f = 2166 \text{kg}$<br>rate of ejection of fuel = $(3500 - 2166)/40 = 33 (.4)$ (allow their $m_f$ )<br>$\text{kg s}^{-1}$ | C1<br>C1<br>C1<br>A1<br>B1 | Allow if speeds wrong way round<br>Correct substitution                                                                           |
|---|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|   |     |      | Thrust = change in momentum of fuel per second                                                                                                                                                                                                 | C1                         | Thrust = initial acceleration of the rocket<br>Allow 1 for rate of change from change in<br>momentum of rocket(3500 x 1200/40)    |
| 4 | (c) | (ii) | 83 000 N(ecf from (c)(i)                                                                                                                                                                                                                       | A1                         | If allowance made for fuel loss to give<br>mean mass during asseleration then<br>answer can score 2 (i.e.3500-<br>1330/2)1200/40) |
|   |     |      |                                                                                                                                                                                                                                                |                            | 3500 x gradient at t=0 approach can score 2                                                                                       |
|   |     | [    | Fuel used up so mass of spacecraft falls                                                                                                                                                                                                       | B1                         |                                                                                                                                   |
|   |     |      | Since $F = ma$                                                                                                                                                                                                                                 | B1                         |                                                                                                                                   |
| 4 | (d) |      | Thrust is constant                                                                                                                                                                                                                             | B1                         |                                                                                                                                   |
|   |     |      | Acceleration increases – gradient of graph increases                                                                                                                                                                                           | B1                         |                                                                                                                                   |
| 5 | (a) | (i)  | arrow shown left to right between the poles of the magnets                                                                                                                                                                                     | B1                         |                                                                                                                                   |
|   |     |      |                                                                                                                                                                                                                                                |                            |                                                                                                                                   |
|   |     |      | Attempt to use of <i>F=BIL</i>                                                                                                                                                                                                                 | M1                         | 5                                                                                                                                 |
| 5 | (a) | (ii) | <b>Correct</b> calculation of the force $1.07 \times 10^{-5}$ leading to 30 µT                                                                                                                                                                 | A1<br>B1                   | Condone 3 x 10 <sup>-5</sup> (1 sf)                                                                                               |
| L | I   | L    | 1'                                                                                                                                                                                                                                             | וט                         | 1                                                                                                                                 |
|   |     |      | Component of <i>B</i> perpendicular to wire decreases                                                                                                                                                                                          | M1                         |                                                                                                                                   |
|   |     |      | Reading falls                                                                                                                                                                                                                                  | A1                         |                                                                                                                                   |
| 5 | (b) |      | Or                                                                                                                                                                                                                                             | • • •                      |                                                                                                                                   |
|   |     |      | Field changes direction / force changes direction                                                                                                                                                                                              | M1                         |                                                                                                                                   |
|   |     |      | reading would decrease                                                                                                                                                                                                                         | A1                         |                                                                                                                                   |

|   |     | refers to an object (eg a top/proton spinning                     | B6 | 5-6                                       |
|---|-----|-------------------------------------------------------------------|----|-------------------------------------------|
|   |     | axis of rotation also rotates : accept sensible diagram           |    | Addresses precession and covers           |
|   |     |                                                                   |    | alignment of protons/preceesion           |
|   |     | protons aligned by strong magnetic field                          |    | frequency/induced emf/precession          |
|   |     | produced by a coil                                                |    | frequency proportional to B               |
|   |     | Aligning field switched off                                       |    | 3 -4                                      |
|   |     | protons undergo precession around the field present at that point |    | Makes sensible attempt at explaining      |
| 5 | (c) | precessing protons induce e.m.f. in a coil                        |    | precession and covers some aspects of     |
|   |     | measure the frequency of the induced emf                          |    | the operation of the magnetometer. Likely |
|   |     | mention of Lamor frequency                                        |    | to appreciate that it is the precession   |
|   |     | frequency is proportional to the strength of the field            |    | frequency that is measured                |
|   |     | reward useful diagrams used in the explanation                    |    | 1-2                                       |
|   |     |                                                                   |    | Makes some sensible comments in an        |
|   |     |                                                                   |    | attempt to explain precession and/or the  |
|   |     |                                                                   |    | operation of the magnetometer             |

| 6 | (a) | downward transition arrow seen<br>correct transition (-951 to -8980 | B1<br>B1 | Must be from one energy level to another |
|---|-----|---------------------------------------------------------------------|----------|------------------------------------------|
|---|-----|---------------------------------------------------------------------|----------|------------------------------------------|

|   |     | correct wavelength used $2.8 \times 10^{-11}$ m                                                               | C1 |  |
|---|-----|---------------------------------------------------------------------------------------------------------------|----|--|
| 6 | (b) | use of energy in J = $hc/\lambda$ 7.07 × 10 <sup>-15</sup> J                                                  | C1 |  |
|   |     | 44 200 (44 000) V<br>(Allow (Their energy from $hc/\lambda$ in J)/1.6x10 <sup>-19</sup> calculated correctly) | A1 |  |
|   |     | (Allow (Their energy from $hc/\lambda$ in J)/1.6x10 <sup>-2</sup> calculated correctly)                       |    |  |

| 6 (c) always above first curve similar shape<br>peaks in same place<br>shortest wavelength and peak wavelength of continuous spectrum<br>decreases | B1<br>B1<br>B1 | Shortest wavelength must be non-zero |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------|

| 6 ( | (d) (i) | <i>E</i> = <i>hf</i> used with 22.1 condoning no conversion to J<br>5.3 - $5.4 \times 10^{18}$ Hz | C1<br>A1 |  |
|-----|---------|---------------------------------------------------------------------------------------------------|----------|--|
|-----|---------|---------------------------------------------------------------------------------------------------|----------|--|

|   |     |      | Attempt to show $E/(Z-1)^2 = constant$ stated                               |    |  |
|---|-----|------|-----------------------------------------------------------------------------|----|--|
|   |     |      | Or correct alternative method                                               | B1 |  |
| 6 | (d) | (ii) |                                                                             |    |  |
|   |     |      | two calculation correct                                                     | B1 |  |
|   |     |      | three correct with conclusion/or states/or shows clearly that $E \propto f$ | B1 |  |
|   |     |      |                                                                             |    |  |
| 6 |     |      | short wavelength needed                                                     | B1 |  |
| 0 | (e) |      | silver (has the highest energy so lowest wavelength)                        | B1 |  |
|   |     |      |                                                                             |    |  |
|   |     |      | Use of a grid in front of the photographic plate/detector (allow diagram)   | B1 |  |
| 6 | (f) |      |                                                                             |    |  |
| 0 | (1) |      | grid eliminates X rays that have been scattered or only allows direct       |    |  |
|   |     |      | rays/photons from the source to hit the plate                               | B1 |  |
|   |     | _    |                                                                             |    |  |
|   |     |      | X-rays are absorbed /transmitted differently by different density material  |    |  |
| 6 | (g) |      | OWTTE                                                                       | B1 |  |
|   | (0) |      | ultrasound is reflected differently by different density material OWTTE     | B1 |  |