Pearson Edexcel

Mark Scheme (Results)

November 2021

Pearson Edexcel International GCSE

In Chemistry (4CH1) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021
Question Paper Log Number P66059RA
Publications Code 4CH1_2C_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
3 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\] \\
M1 all state symbols correct \\
M2 balancing correct \\
(sulfur dioxide is reduced because it) loses oxygen
\end{tabular} \& \begin{tabular}{l}
ALLOW upper case \\
ALLOW multiples/fractions \\
IGNORE references to electrons
\end{tabular} \& 2

1

\hline | 3 (b) (i) |
| :--- |
| (ii) | \& | Explanation linking following points |
| :--- |
| M1 sulfur/ (pale yellow) solid forms nearer to sulfur dioxide side/closer to left OWTTE ORA |
| M2 so hydrogen sulfide particles moved / diffused further (in same time) OWTTE ORA |
| M1 M_{r} of $H_{2} S=(1+1+32)=34$ |
| M2 M_{r} of $\mathrm{SO}_{2}=(32+16+16)=64$ |
| M3 statement of relationship eg the higher the Mr the slower the gas diffuses | \& ACCEPT reverse argument \& 2

\hline
\end{tabular}

Total marks for Question 3 = 8

Question number	Answer	Notes	Marks
4 (a)	M1 (cation) Mg^{2+}	ALLOW 1 mark if formulae correct but in wrong order	2
(b)		ALLOW any combination of dots and crosses	3

Question number	Answer	Notes	Marks
(c) (i)	hydroxide/ OH^{-}		

Total marks for Question 4 = 13

Question number	Answer	Notes	Marks
5 (a) (i) (ii)	ore(s) gold/platinum	IGNORE minerals ALLOW silver/copper ALLOW symbols	1 1
5 (b) (i) (ii)	(calcium from calcium chloride) M1 electrolysis M2 (because) calcium is more reactive than carbon OR carbon cannot displace calcium (lead from lead oxide) M1 carbon extraction M2 (because) carbon is more reactive than lead OR carbon can displace lead	ALLOW reverse argument M2 dep on M1 ALLOW reverse argument M2 dep on M1	2

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
5 (c) \\
(d)
\end{tabular} \& \begin{tabular}{l}
M1 2-D diagram showing at least two layers of particles \\
M2 particles labelled atoms or (positive) ions \\
(malleable because) \\
M3 layers can slide over each other \\
M1 calculation of \(\mathrm{Mr}_{r}\) of \(\mathrm{Al}_{2} \mathrm{O}_{3}\) \\
M2 moles of \(\mathrm{Al}_{2} \mathrm{O}_{3}\) \\
M3 calculation of mass of aluminium \\
exemplar \\
M1 102 \\
M2 1275 \(\div 102\) OR 12.5 (moles) \\
M3 \((12.5 \times 2 \times 27)=675 \mathrm{~g}\)
\end{tabular} \& \begin{tabular}{l}
ALLOW M1×2 \\
ALLOW ecf from M1 \\
ALLOW ecf from M2 \\
675g without working scores 3 \\
0.675 without working scores 2 \\
337.5 without working scores 2 \\
1350 without working scores 2
\end{tabular} \& 3

3

\hline
\end{tabular}

Total marks for Question 6 = 11

Total marks for Question $7=10$

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

