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Section A (31 marks)

Answer all the questions.

1 (a) Express 
( ) ( )r r2 1 2 1

1
- +

 in partial fractions. [3]

 (b) Hence find 
=
( ) ( )r r2 1 2 1

1
n

1
- +

r

/ , expressing the result as a single fraction. [4]

2 In this question you must show detailed reasoning.

 Find the gradient of the curve ( )arcsiny x6 2=  at the point with x-coordinate 
4

1
. Express the result 

in the form m n , where m and n are integers. [4]

3 In this question you must show detailed reasoning.

 The complex numbers z
1
 and z

2
 are given by z 2 2i

1
=- +  and cos sinz 2 i

2 6

1

6

1r r= +a k.

 (a) Find the modulus and argument of z
1
. [2]

 (b) Hence express 
z

z

2

1
 in exact modulus-argument form. [4]

4 In this question you must show detailed reasoning.

 Determine the mean value of 
x1 4

1

2
+

 between  x 1=-  and x 1= . Give your answer to 3 significant 

figures. [4]

5 (a) Use a Maclaurin series to find a quadratic approximation for ( )l n x1 2+ . [1]

 (b) Find the percentage error in using the approximation in part (a) to calculate ( . )ln 1 2 . [3]

 (c) Jane uses the Maclaurin series in part (a) to try to calculate an approximation for ln 3. 

  Explain whether her method is valid. [2]

6 Given that y mx=  is an invariant line of the transformation with matrix 
1

2

2

2-

J

L
KK

N

P
OO, determine the 

possible values of m. [4]
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Section B (113 marks)

Answer all the questions.

7 Prove that 
=

r n

2
4

2

2

r n

n

1 1

1

= -
+

- -

r

/  for all n 1H . [6]

8 The equation x x px qx4 4 9 0
4 3 2
- + + - = , where p and q are constants, has roots a, -a, b and 

1
b

.

 (a) Determine the exact roots of the equation. [5]

 (b) Determine the values of p and q. [4]

9 The transformation T of the plane has associated matrix M, where M
1

2

0

1
=
-

-

J

L
KK

N

P
OO.

 (a) On the grid in the Printed Answer Booklet, plot the image OAʹBʹCʹ of the unit square OABC 
under the transformation T. [2]

 (b) (i) Calculate the value of det M.   [1]

  (ii) Explain the significance of the value of det M in relation to the image OAʹBʹCʹ. [2]

 (c) T is equivalent to a sequence of two transformations of the plane.

  (i) Specify fully two transformations equivalent to T. [3]

  (ii) Use matrices to verify your answer. [3]

10 (a) Show on an Argand diagram the points representing the three cube roots of unity. [2]

 (b) (i) Find the exact roots of the equation z 1 3i
3
- = , expressing them in the form reii , where 

r 02  and 1 1r i r- . [5]

  (ii) The points representing the cube roots of unity form a triangle 
1
D . The points representing 

the roots of the equation z 1 3i
3
- =  form a triangle 

2
D . 

   State a sequence of two transformations that maps 
1
D  onto 

2
D . [2]

  (iii) The three roots in part (b)(i) are z
1
, z

2
 and z

3
. 

   By simplifying z z z
1 2 3
+ + , verify that the sum of these roots is zero. [2]

  (iv) Hence show that sin 20° + sin 140° = sin 100°. [2]
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11 (a) Given that u = mi + j - 3k and v = i + 2j - 2k, find the following, giving your answers in 

terms of m.

  (i)  u.v [1]

  (ii) u # v [2]

 (b) Hence determine

  (i) the acute angle between the planes x y z2 3 10+ - =  and x y z2 2 10+ - = , [3]

  (ii) the shortest distance between the lines 
x y z

3

3

1 3

2-
= =

-

-
 and 

x y z

1 2

4

2

2
=
-
=
-

+
, giving 

your answer as a multiple of 2. [3]

12 Fig. 12 shows a rhombus OACB in an Argand diagram. The points A and B represent the complex 
numbers z and w respectively.

 

Im

B

A

ReO

C

 Fig. 12

 Prove that ( ) ( )arg arg argz w z w
2

1
+ = + .

 [A copy of Fig. 12 is provided in the Printed Answer Booklet.] [4]

13 Find the general solution of the differential equation 
x

y

x

y
y3 22

d

d

d

d
e
x

2

2

- =+ . [7]
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14 A curve has polar equation ( )cos sinr a 2i i= + , where a is a positive constant and 0 G Gi r.

 (a) Determine the polar coordinates of the point on the curve which is furthest from the pole. [7]

 (b) (i) Show that the curve is a circle whose radius should be specified. [6]

  (ii) Write down the polar coordinates of the centre of the circle. [1]

15 The equations of three planes are

 

,

,

.

x ky z

x y z l

x y z

4 7 4

2 5

2 3 2

- + + =

- + =

+ + =

 Given that the planes form a sheaf, determine the values of k and l. [6]

16 (a) Show using exponentials that cosh sinhu u2 1 2
2

= + . [4]

 (b) Show that d ( )ln
x

x
x

4

2 2 2 1 2
2

0

2 2

+

= - +y . [10]

17 In a chemical process, a vessel contains 1 litre of pure water. A liquid chemical is then passed into 

the top of the vessel at a constant rate of a litres per minute and thoroughly mixed with the water. 

At the same time, the resulting mixture is drawn from the bottom of the vessel at a constant rate 

of b litres per minute. You may assume that the chemical mixes instantly and uniformly with the 

water. After t minutes, the mixture in the vessel contains x litres of the chemical.

 (a) (i) Show that the proportion of chemical present in the vessel after t minutes is 

( )a b t

x

1+ -
. [2]

  (ii) Hence show that 
( )t

x

a b t

bx
a

1d

d
+
+ -

= . [2]

 (b) First, consider the case where b a= .

  (i) Solve the differential equation to find x in terms of a and t. [4]

  (ii) Given that after 1 minute the vessel contains equal amounts of water and chemical, find 

the rate of inflow of chemical. [2]

 (c) Now consider the case where b a2= .

  (i) Explain why the differential equation in part (a)(ii) is now invalid for t
a

1
H . [1]

  (ii) Find the maximum amount of chemical in the vessel. [9]

END OF QUESTION PAPER
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