

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022 Question Paper Log Number P68798RA Publications Code 4MA1_2H_2206_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- cao correct answer only
- ft follow through
- isw ignore subsequent working
- SC special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- awrt answer which rounds to
- eeoo each error or omission

No working

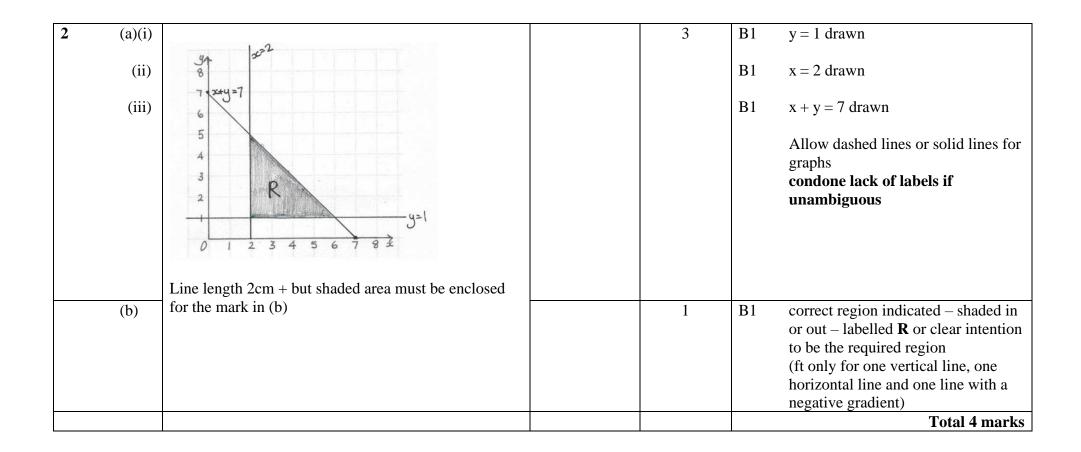
- If no working is shown then correct answers normally score full marks
- If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

- If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
- If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
- If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified.
- Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.
- If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

- It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
- It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
- Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.


Parts of questions

• Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

International GCSE Maths

Apart from questions 4, 10, 14a,15a, 15b, 18, 24 the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method

Q	Working	Answer	Mark	Notes
1			3	M1 for $d = 9$ or
				$(c + d) \div 2 = 8$ (algebraically or clearly labelled integers)
				or $d-a = 4$ (algebraically or clearly labelled integers)
				M1 for at least two of
				a = 5 or c = 7 or d = 9
				or
				$(c + d) \div 2 = 8$ (algebraically or clearly labelled integers)
				or
				or $d - a = 4$ (algebraically or clearly labelled
				integers)
		a = 5, b = 6,		A1 All correct
		c = 7, d = 9		
				Total 3 marks

3	For sight of 5 hrs 24 mins = 5.4 (hrs) or $5\frac{24}{60} \left(=5\frac{2}{5}\right)$ oe or 324 (mins) or 19440 (secs)		3	B1	
	$3980 \div 5.4 \text{ or } \frac{3980}{324} \times 60 \text{ oe}$			M1	For distance ÷ time that should give the correct speed in km/h. (SC allow 3980 ÷ 5.24 (= 759.5or 760) for this mark unless mark has been awarded for 324 minutes or 5.4 hours oe)
		737		A1	awrt 737 (if no working shown, 738 gets SCB2)
					Total 3 marks

4	$\frac{16}{3}(-)\frac{20}{7} \text{ or } (5)\frac{7}{21}(-)(2)\frac{18}{21}$		3	M1	for correct improper fractions or fractional part of numbers written correctly over a common denominator (no need for minus sign)
	$\frac{112}{21} - \frac{60}{21} \text{ or } 5\frac{7}{21} - 2\frac{18}{21} = 3 - \frac{11}{21} \text{ oe or}$ $5\frac{7}{21} - 2\frac{18}{21} = 4\frac{28}{21} - 2\frac{18}{21}$			M1	for correct fractions with a common denominator with minus sign or mixed numbers to the stage shown
	$\frac{112}{21} - \frac{60}{21} = \frac{52}{21} = 2\frac{10}{21} \text{ oe or } 3 - \frac{11}{21} = 2\frac{10}{21} \text{ or}$ $5\frac{7}{21} - 2\frac{18}{21} = 4\frac{28}{21} - 2\frac{18}{21} = 2\frac{10}{21}$	Shown		A1	Dep on M2 for a correct answer from fully correct working If all 3 fractions turned into improper fractions on the first line $\frac{16}{3} - \frac{20}{7} = \frac{52}{21}$ then the student clearly needs to show that the LHS $= \frac{52}{21}$
					Total 3 marks

5	28 × 12 (=336) or 5 × 12 (= 60) or 18 × 12 (= 216) or 28 × 20 (=560) or $\frac{1}{2}$ (CD + "18")"8" oe eg 72 +4CD [numbers in "" come from correct working] Check diagram for areas		4	M1	For a correct method to find the area of a rectangle (may be seen as part calculation) or a correct expression for the area of the trapezium with numbers substituted. Allow for other correct methods to find area linked to this shape.
	"336" + 0.5("18" + CD)"8" = 434 oe eg 4("18" + CD) = 98 or eg 0.5("18" + CD)"8" = "98" oe eg $\frac{1}{2}(18 + CD) = 12.25$ or "560"-2(0.5(5 + x)"8") = 434 oe (where x is horizontal from D to perp with AF) [numbers in "" come from correct working]			M1	correct use of their values from correct working for an equation involving CD (CD could be labelled with any letter)
	eg (CD =) $\frac{196-144}{8} \left(=\frac{52}{8}\right)$ or (CD =) $\frac{98-72}{4} \left(=\frac{26}{4}\right)$ or (CD =) $\frac{434+152-560}{4}$ or (CD =) 2×12.25-18 or 98×2(=196), "196"÷8(=24.5),"24.5"-18			M1	a correct process to solve a correct equation or a correct process to find CD using correct values
		6.5		A1	oe
					Total 4 marks

6	$\cos 42 = \frac{x}{9.5} \text{ or}$	3	M1 a correct trig statement for x or correct Pythagoras for x ²
	$\tan 42 = \frac{9.5 \sin 42}{x} \text{ or}$		
	$\sin(90-42) = \frac{x}{9.5}$ or		
	$\frac{x}{\sin(90-42)} = \frac{9.5}{\sin 90}$ or		
	$9.5^2 - (9.5\sin 42)^2$		
	(x =) 9.5cos 42 or		M1 a fully correct calculation to find x
	$(x=)\frac{9.5\sin 42}{\tan 42}$ or		
	$(x=)9.5\sin(90-42)$ or		
	$(x=)\frac{9.5\sin(90-42)}{\sin 90}$ or		
	$(x =) \sqrt{9.5^2 - (9.5 \sin 42)^2}$ or		
	7.1		A1 awrt 7.1
			Total 3 marks

7	×1000 (÷60 ÷ 60) or ÷3600 or sight of 81 000 or 1350 or 0.0225		3		one of ×1000 (eg sight of 81 000) or (÷60 ÷ 60) 3600 oe
	$\frac{81 \times 1000}{60 \times 60}$ oe eg $\frac{81}{3.6}$ or $81 \times \frac{5}{18}$ oe			brac	a fully correct method with correct use of ckets eg $81000 \div 60 \times 60$ is M1 only if not overed
		22.5		A1 or -	$\frac{45}{2}$ or $22\frac{1}{2}$
					Total 3 marks

8	$300 \div (7 + 5 + 3) (= 20)$		5	M1	(no mark for "15" unless it is used correctly)
-	clear correct use of $7 + 5 + 3$ (= 15) eg division		-		· · ··································
	at the end by 15 $\left(\frac{"2.8"+"1.8"}{15}\right)$ or correct use of				use of 7×20 or 140 or 5×20 or 100 in further work assumes this mark
	15 in a fraction eg $\frac{2}{5} \times \frac{7}{15}$				
	$\frac{2}{5} \times (7 \times "20") (=56)$ oe eg 0.4 ×"140" (= 56)			M1	finding $\frac{2}{5}$ of the number of birthday cards
	or $\frac{2}{5} \times 7 \left(= \frac{14}{5} = 2.8 \right)$ eg $\frac{2}{5} \times \frac{7}{15} \left(= \frac{14}{75} = 0.186 \right)$				or $\frac{2}{5}$ of the share of 7 or $\frac{2}{5}$ of fraction of amount
	$0.36 \times (5 \times ``20")(=36) [from working]$ or $0.36 \times 5 (= 1.8) \text{ eg } \frac{36}{100} \times \frac{5}{15} \left(= \frac{180}{1500} = 0.12 \right) \text{ oe}$			M1	finding 36% of anniversary cards Or 36% of the share of 5 or 36% of fraction of amount
	$\frac{"56"+"36"}{300} (= \frac{92}{300}) \text{ or }$ $eg\left(\frac{"2.8"+"1.8"}{15}\right) \text{ or } \frac{\frac{14}{5} + \frac{9}{5}}{15}$ $"\frac{14}{75}"+"\frac{180}{1500}"$			M1	for any fraction from correct working that isn't simplified or 30.66% or 0.3066
	$\frac{75}{75}$ $+ \frac{71}{1500}$				
		$\frac{23}{75}$		A1	
					Total 5 marks

9	$50\ 000 \times 1.013\ (=50\ 650)\ oe$ Or 50\ 000 × 0.013 (= 650) oe (NB: accept $\left(1 + \frac{1.3}{100}\right)$ for 1.013 but not (1 + 1.3%))		3	M1	For finding 101.3% or 1.3% of 50 000	M2 for 50000×1.013 ⁴ or 50000×1.013 ⁵
	"50 650" × 1.013 (=51 308.45) "51 308.45"× 1.013 (=51 975.45) "51 975.45"× 1.013			M1	dep for a complete method	
		52 651		A1	awrt 52 651 if no marks awarde $50\ 000 \times 0.013^{n}$ $50\ 000 \times 0.987^{4}$ (= $50\ 000 \times 0.052$ (= $50\ 000 \times 1.052$ ((= $50\ 000 \times 1.013^{2}$ (= $50\ 000 \times 1.013^{3}$ (= 5)	47450) 2600) = 52600) 51308.45) 51975.45)
						Total 3 marks

10	eg ${}^{+7x+3y=3}_{9x-3y=21}$ or ${}^{-21x+9y=9}_{21x-7y=49}$ or eg $7x+3(3x-7)=3$ or $7\left(\frac{7+y}{3}\right)+3y=3$		3	M1	a correct method to eliminate x or y – multiplying one or both equations so that one variable can be eliminated (allow a total of one error in multiplication) and the correct operation to eliminate or for substitution of one variable into the other equation.
	If first M1 gained then they can substitute an incorrect value if from 'correct' method to gain this mark.			M1	dep on M1 for a correct method to calculate the value of other letter eg substitution or starting again with elimination
		x = 1.5, y = -2.5		A1	oe dep on M1 Total 3 marks

11 (i)	$(x \pm 3)(x \pm 8)$		2	M1 or $(x + a)(x + b)$ where $ab = -24$ or $a + b = 5$
		(x-3)(x+8)		A1
(ii)		3, -8	1	B1ft Must ft from their answer to (i) ft from their incorrect factors in the form (x + a)(x + b)
				Total 3 marks

12	$7 \times 2.7 \ (=18.9) \text{ or } 4 \times 3.3 \ (=13.2) \text{ or}$		3	M1 For one correct product or for a correct equation for W
	$\frac{3W + 4 \times 3.3}{7} = 2.7 \text{ oe eg } 3W + 13.2 = 18.9$			
	$\frac{7 \times 2.7 - 4 \times 3.3}{3} \text{ or } \frac{"18.9" - "13.2"}{3} \text{ or } \frac{5.7}{3} \text{ or } 3W = 5.7$			M1
	If you see 1.9 from correct working and they do further work to this value, award M2	1.9		A1
				Total 3 marks

13	(a)		7, 32, 52, 66, 74, 80	1	B1	
	(b)	If a graph is ascending you can ft for the marks in parts (c) and (d)		2	B2	(use overlay) Fully correct cf graph – points at ends of intervals and joined with curve or line segments. If not B2 then B1(ft from a table with only one arithmetic error) for 5 or 6 of their points either plotted correctly at ends of intervals not joined or plotted consistently within each interval (not at upper ends of intervals) at their correct heights and joined with smooth curve or line segments.
	(a)		32-34	1	B1	(ignore curve/line from 0 to first plotted point)
	(c)		32-34	1	DI	Any value in range (ft their CF graph reading across at 40 or 40.5)
	(d)			3	M1	For a correct method to take readings at 18 and 65 (eg 6 and 77) even if not given values or error reading the CF scale (ft a CF graph if method shown)
		eg $(77 - 6) \times 0.6$ oe			M1	ft dep on previous M1 for their difference (working must be shown if incorrect values used) ft finding 60% of their difference dep on previous M1
			42, 43, 44		A1	ft award full marks for an integer answer in the range if not from incorrect working and ft their CF graph if value outside range (but for this accuracy mark all readings must be correct) ft their graph but answer must be whole number (value rounded or truncated)
						Total 7 marks

14 (a)	$(5-x)(2x+3) = 10x + 15 - 2x^{2} - 3x (= -2x^{2} + 7x + 15)$ or $(5-x)(x+4) = 5x + 20 - x^{2} - 4x (= -x^{2} + x + 20)$ or $(2x+3)(x+4) = 2x^{2} + 8x + 3x + 12 (= 2x^{2} + 11x + 12)$		3	M1 multiplying 2 factors only but do not award if they multiply eg (5-x)(2x+3) and $(5-x)(x+4)$ as their method allow one error
	$(-2x^{2}+7x+15)(x+4) = -2x^{3}-8x^{2}+7x^{2}+28x+15x+60$ or $(-x^{2}+x+20)(2x+3) = -2x^{3}-3x^{2}+2x^{2}+3x+40x+60$ or			M1 (dep)ft for expanding by the third factor, allow one further error
	$(2x^{2}+11x+12)(5-x) = 10x^{2} - 2x^{3} + 55x - 11x^{2} + 60 - 12x$			
		$-2x^3 - x^2 + 43x + 60$		A1 Dep on M1
	ALTERNATIVE			
	$10x^2 + 15x + 40x + 60 - 2x^3 - 3x^2 - 8x^2 - 12x$		3	M2 for a complete expansion with 8 terms present, at least 4 of which must be correct (M1 for 4 correct terms from any number of
				terms)
		$-2x^3 - x^2 + 43x + 60$		A1

(b) $g+7 = \frac{c+3}{4+c}$ or $g(4+c) = c+3-7(4+c)$ or $g = \frac{c+3}{4+c} - \frac{7(4+c)}{4+c} \left(= \frac{c+3-28-7c}{4+c} \right)$		4	M1	Adding 7 to both sides as a first step or removing fraction correctly
eg $4g + gc + 28 + 7c = c + 3$ or 4g + gc = c + 3 - 28 - 7c oe			M1	removing fraction and expanding all brackets in an equation with no more than one error
eg gc + 7c - c = $3 - 28 - 4$ g or 28 - 3 + 4g = c - 7c - gc			M1ft	ft dep on previous M1 - terms in c on one side and other terms on the other side in an equation
	$c = \frac{-(4g + 25)}{g + 6}$		A1	oe eg c = $\frac{25+4g}{-6-g}$ or c = $\frac{3-28-4g}{g+7-1}$ oe [if c = is missing allow full marks if seen in working otherwise 3 marks] (SCB2 for an answer of c = $\frac{-4-4g}{g-1}$ oe or c = $\frac{31-4g}{g-8}$ oe SCB1 in working for 4g + cg = c + 3 - 7 oe or 4g + cg - 28 - 7c = c + 3 oe
				Total 7 marks

15	(a)	eg $\frac{2(4x+5)-3(3-2x)}{6} (=13)$ oe or $\frac{2(4x+5)}{6} - \frac{3(3-2x)}{6} (=13)$ $2(4x+5) - 3(3-2x) = 13 \times 3 \times 2$ oe		4	M1	Writing fractions over a common denominator or removing denominator If the student has removed the denominator at this stage then a correct method must be shown or implied	Allow one error in removal of brackets
		eg $8x + 10 - 9 + 6x = 78$ oe eg $14x + 1 = 78$			M1ft	ft dep on previous M1 removing brackets and fractions correctly in an equation	
		eg $8x + 6x = 78 - 10 + 9$ oe eg $14x = 77$			M1ft	ft dep on previous M1 terms in x on one side and terms the other	d number
			5.5		A1	oe eg $\frac{11}{2}$ dep on M2	
	(b)	$\frac{(2y+5)(y-6) \text{ or}}{2-7\pm\sqrt{(-7)^2-4\times2\times-30}}$ $2\left[\left(y-\frac{7}{4}\right)^2-\frac{49}{16}\right]-30(=0) \text{ oe}$		3	M1	A correct method to solve the quadratic - allow f that gives 2 out of 3 terms correct when expande quadratic formula – if using formula, allow one s allow if simplified as far as $\frac{7 \pm \sqrt{49 + 240}}{4}$ or u completing the square with one sign error as far	d or use of sign error and se of
		(y =) 6, (y =) -2.5			A1	Correct critical values dep on M1	
			-2.5 □ y □ 6		A1	oe eg y2.5 (and) y,, 6 or [-2.5, 6] (do not penalise change of variable eg y to x) dep on M1	
						1	otal 7 marks

16 (a)	$ \begin{array}{c} $	Fully correct Venn diagram	3	B1 B2		For a contract of the contract
(b)(i)		36	1	B1ft	ft from a diagram	If these 3 parts are given as
(ii)		44	1	B1ft	where values are	probabilities, please mark
(iii)		35	1	B1ft	present in the required regions	incorrect the first time but award marks from there on if numerator is correct
(c)		$\frac{18}{53}$	2	B2ft	oe 0.33(96) or 3	33(.96)% ft their Venn diagram
		53			or	
					(B1 for $\frac{18}{m}$ where 1	m>18 or $\frac{n}{53}$ where n < 53 or
					for 18:53 or other	
					or B1ft their Venn	
					$\frac{18^{m}}{m}$ where m>"1	8" or $\frac{n}{"53"}$ where n < "53")
						Total 8 marks

17	$M = kh^3$ oe or $4 = k \times 0.5^3$ oe		4	M1	$k \neq 1$ and where k	M2 for
	$k = \frac{4}{0.5^3}$ or $k = \frac{4}{0.125}$ or $k = 32$			M1	could be any letter Allow this for M2 if M = kh ³ is not written	$\frac{500}{4} = \frac{h^3}{0.5^3} \text{ oe or}$ 125 × 0.5 ³ (= 15.625) oe
	h = $\sqrt[3]{\frac{500}{"32"}}$ or $\sqrt[3]{\frac{500 \times 0.5^3}{4}}$ or $\sqrt[3]{15.625}$ or			M1	-	on for h using correct values completely correct method
	$h = 5 \times 0.5$		-			
		2.5		A1	oe	
						Total 4 marks

18	7.45, 7.55, 3.415, 3.425, 1.5, 2.5		3	B1 For one correct upper or one correct lower bound
				Allow 7.549 for 7.55, 3.4249 for 3.425, 2.49 for 2.5
	$(X =) \frac{2 \times 7.55 - 3.415}{1.5}$ oe eg $\frac{11.685}{1.5}$			$\frac{M1}{LB_{f}} = \frac{2 \times UB_{a} - LB_{b}}{LB_{f}} \text{ where } 7.5 < UB_{a} \le 7.55, \ 3.415 \le LB_{b} < 3.42,$
				$1.5 \le LB_{f} < 2$
				(also award this mark for $\frac{7.55 - 3.415}{1.5}$ or $\frac{2(7.55 - 3.415)}{1.5}$)
		7.79]	A1 must be from correct working
				Total 3 marks

19	$(a =) \frac{14}{3 \times \frac{7}{4y - 3} - 7}$		3	M1	For a correct substitution
	$(a =)\frac{14(4y-3)}{21-7(4y-3)} \text{ oe eg } \frac{56y-42}{21-28y+21}$			M1	or for a correct but unsimplified answer in the form $\frac{m}{n}$ ie the denominator should be simplified to remove the fraction
		$\frac{4y-3}{3-2y}$	-	A1	oe but must be simplified
					Total 3 marks

19 alt	$x = \frac{14 + 7a}{3a} \text{ and}$ $\frac{14 + 7a}{3a} = \frac{7}{4y - 3}$		3	M1	For rearranging 'x' to be in terms of a and equating two expressions for a
	a(42-28y) = 56y-42 oe eg (a =) $\frac{56y-42}{21-28y+21}$			M1	or for a correct but unsimplified answer in the form $\frac{m}{n}$
		$\frac{4y-3}{3-2y}$		A1	oe but must be simplified
					Total 3 marks

20	eg $2d \times 2d - 4 \times \pi \times (\frac{1}{2}d)^2 (=40)$ oe or $4r \times 4r - 4 \times \pi \times r^2 (=40)$ oe or $x^2 - 4\pi \left(\frac{1}{4}x\right)^2 (=40)$ oe or $w^2 - \pi \left(\frac{1}{2}w\right)^2 (=10)$ oe		4 M1	oe a correct expression or a correct equation for the shaded area (must be in one unknown only) where d = diameter r = radius x = side of large square w = side of square when shape divided into 4
	$d = \sqrt{\frac{40}{4 - \pi}} (= 6.826) \text{ or } 2d = \sqrt{\frac{160}{4 - \pi}} (= 13.652) \text{ oe}$ $r = \sqrt{\frac{40}{16 - 4\pi}} (3.413) \text{ or } 4r = \sqrt{\frac{640}{16 - 4\pi}} (= 13.652) \text{ oe}$ $x = \sqrt{\frac{40}{1 - 0.25\pi}} (13.652) \text{ or } w = \sqrt{\frac{10}{1 - 0.25\pi}} (= 6.826) \text{ oe}$		M1	oe a correct expression for d or 2d or r or 4r or x or w
	(perimeter =) $8 \times "6.826" (8 \times \text{diameter}(\text{or side of small square when divided}))$ or $16 \times "3.413" (16 \times \text{radius}) \text{ oe}$ or $4 \times "13.652"(4 \times \text{side of square})$		M1ft	dep on first M1 For substituting values into a calculation for the perimeter use of their r, d, x, w
		54.6	A1	54.4 - 54.7
				Total 4 marks

21	$\overrightarrow{OP} = 4\mathbf{a} + 2\mathbf{a} + 8\mathbf{b} (= 6\mathbf{a} + 8\mathbf{b})$ or $\overrightarrow{PO} = -6\mathbf{a} - 8\mathbf{b}$ or $\overrightarrow{PO} = -6\mathbf{b} - 8\mathbf{b}$ or P	5	M1	oe for one of \overrightarrow{OP} or \overrightarrow{PO} or \overrightarrow{AB} or \overrightarrow{BA} or \overrightarrow{BP} or \overrightarrow{PB}
	$\overrightarrow{AB} = 6\mathbf{b} - 4\mathbf{a}$ or $\overrightarrow{BA} = 4\mathbf{a} - 6\mathbf{b}$			(may be seen as part of another vector calculation)
	$\overrightarrow{BP} = 6\mathbf{a} + 2\mathbf{b}$ oe OR $\overrightarrow{PB} = -6\mathbf{a} - 2\mathbf{b}$ oe			
	$\overrightarrow{OQ} = 4\mathbf{a} + \lambda(6\mathbf{b} - 4\mathbf{a})$ or $OR 6\mathbf{b} + \mu(4\mathbf{a} - 6\mathbf{b})$ or $OR x(6\mathbf{a} + 8\mathbf{b})$ or		M1	for one of \overrightarrow{OQ} or \overrightarrow{QO} or \overrightarrow{BQ} or \overrightarrow{QB} or
	or			\overrightarrow{AQ} or \overrightarrow{QA} or \overrightarrow{QP} or \overrightarrow{PQ}
	$\overrightarrow{BQ} = \mu(4\mathbf{a} - 6\mathbf{b})$ or $OR - 6\mathbf{b} + \lambda(6\mathbf{a} + 8\mathbf{b})$ or $OR 4\mathbf{a} - 6\mathbf{b} + x(6\mathbf{b} - 4\mathbf{a})$ or			
	or			
	$\overrightarrow{AQ} = y(6\mathbf{b} - 4\mathbf{a})$ or $OR - 4\mathbf{a} + x(6\mathbf{a} + 8\mathbf{b})$ or $OR - 6\mathbf{b} - 4\mathbf{a} + \mu(4\mathbf{a} - 6\mathbf{b})$ or OR			
	$2\mathbf{a} + 8\mathbf{b} + \mathbf{m}(6\mathbf{a} + 8\mathbf{b})$ oe			
	or			
	$\overrightarrow{\text{QP}} = \lambda(6\mathbf{a} + 8\mathbf{b}) \text{ oe OR } \mu(4\mathbf{a} - 6\mathbf{b}) + 2\mathbf{a} + 8\mathbf{b} \text{ oe}$			
			M1	1
				OR
				for two correct expressions for parallel vectors eg 2 of \overline{OO} \overline{OO} \overline{OO} \overline{OO} \overline{OO}
				\overrightarrow{OQ} , \overrightarrow{OP} , \overrightarrow{QP} oe AND using ratios to form an
				equation in one variable that can lead to a solution eg
				$\overrightarrow{OQ} = 4\mathbf{a} + k(6\mathbf{b} - 4\mathbf{a})$ and $\overrightarrow{QP} = 2\mathbf{a} + 8\mathbf{b} - k(6\mathbf{b} - 4\mathbf{a})$
				and $\frac{4-4k}{k} = \frac{6k}{k}$
				2+4k $8-6k$
	eg $\lambda = \frac{8}{17}$ or $\mu = \frac{9}{17}$ or AQ:QB = $\frac{4x}{3} : \frac{3x}{2}$ oe		A1	oe
		8:9	A1	oe
				Total 5 marks

22	(gradient AM =) $\frac{4-2}{-3-0}$ oe $(=-\frac{2}{3})$		7	M1	A correct method to find gradient of AM
	$y = \frac{3}{2}x + 2 \text{ or}$ $eg \frac{y-2}{x} = \frac{3}{2}oe$			M1	For the correct equation of the line passing through BD or for a correct expression involving the x and y coordinates of point B or point D
	$(x3)^{2} + (y-4)^{2} = 6.5^{2} \text{ or}$ (x-0) ² + (y-2) ² = 6.5 ² - [(-3-0)^{2} + (4-2)^{2}] oe eg x ² + (y-2)^{2} = 29.25			M1	A correct equation in x and y to find the coordinates of B and D
	eg $x^{2}+6x+9+y^{2}-8y+16-42.25=0.00$ or $x^{2}+y^{2}-4y+4-29.25=0.00$			M1	Brackets expanded
	eg x ² + 6x + 9 + $\left(\frac{3}{2}x + 2\right)^2 - 8\left(\frac{3}{2}x + 2\right) + 16 - 42.25 = 0$ $\left(\frac{2y-4}{3}\right)^2 + y^2 - 4y + 4 - 29.25 = 0$ oe			M1	For a correct substitution into a correct equation to get an equation in either x only or y only
	eg $\frac{13}{4}x^2 = \frac{117}{4}$ or oe $13y^2 - 52y - 211.25 = 0$			M1	A fully correct simplified equation in x or in y – all brackets expanded and like terms grouped.
		(3, 6.5) (-3, -2.5)		A1	correct coordinates SCB3 for one pair of correct coordinates or both x values correct or both y values correct
					Total 7 marks

See next page for alternative scheme

22 Alt 1	$(AM =)\sqrt{3^2 + 2^2} (=\sqrt{13} = 3.605)$ or $(AM^2 =)3^2 + 2^2 (=13)$	7	M1	Use of Pythagoras for point A to point M
	$(BM =)\sqrt{6.5^2 - \sqrt[n]{\sqrt{13}}} = \sqrt{29.25} = \frac{3\sqrt{13}}{2} 5.4083)$		M1	A correct method to find the length of BM or DM
	$(SF =) \frac{\sqrt{29.25}}{\sqrt{13}} = \frac{3}{2}$ or $MN = x$, $BN = 1.5x$ (see diag) or $(LAM =) \sin^{-1} \frac{3}{\sqrt{13}} (= 56.3)$ or $(LMA =) \cos^{-1} \frac{3}{\sqrt{13}} (= 33.6)$ or		M1	A correct method to find the SF of the enlargement of the sides AM to BM or angle LAM OR LMA A A A A A A A A A A
	eg $\overrightarrow{MB}_x = \frac{3}{2} \times 2 \text{ or } \overrightarrow{MB}_y = \frac{3}{2} \times 3 \text{ or } \overrightarrow{MD}_x = -\frac{3}{2} \times 2 \text{ or } \overrightarrow{MD}_y = -\frac{3}{2} \times 3 \text{ oe}$ or $x^2 + (1.5x)^2 = \sqrt{29.25}^2$ or $MN = \sqrt{29.25} \cos 56.3(=3) \text{ oe}$ or $BN = \sqrt{29.25} \sin 56.3(=4.5)$ oe turn over		M1	A correct method to find the translation of at least one component of MB or MD (need not be written in vector form) OR correct Pythagoras statement using the SF to find x coordinates OR 1 correct trig statement to find translations from M
	$\overline{\text{MB}}_{x} = \frac{3}{2} \times 2 \text{ and } \overline{\text{MB}}_{y} = \frac{3}{2} \times 3 \text{ or } \overline{\text{MD}}_{x} = -\frac{3}{2} \times 2 \text{ and } \overline{\text{MD}}_{y} = -\frac{3}{2} \times 3 \text{ oe}$ or $x^{2} + 2.25x^{2} = 29.25$ or $\text{MN} = \frac{3\sqrt{13}}{2}\cos 56.309(=3) \text{ and } \text{BN} = \frac{3\sqrt{13}}{2}\sin 56.309(=4.5) \text{ oe}$		M1	A correct method to find the translation of both components of MB or MD (need not be written in vector form) OR correct Pythagoras statement with no brackets using the SF to find x coordinates OR 2 correct trig statements to find translations from M

eg (0, 2) is translated $\begin{pmatrix} 3\\4.5 \end{pmatrix}$ or $(0+3, 2+4.5)$ (= (3, 6.5)) or (0, 2) is translated $\begin{pmatrix} -3\\-4.5 \end{pmatrix}$ or $(0-3, 2-4.5)$ (= (-3, -2.5)) oe			M1	correct method to find the coordinates of B or D or one pair of correct coordinates or a correct method to find both x coordinates or both y coordinates OR
or $3.25x^2 = 29.25$				a fully correct simplified equation in x all brackets expanded and like terms grouped.
5.23x = 29.23	(3, 6.5)	_	A1	correct coordinates
	(-3, -2.5)			SCB3 for one correct coordinate or both x values correct or both y values correct
				Total 7 marks

23 (i)	(180, 0)	1	B1
(ii)	(360, -1)	1	B1
			Total 2 marks

24	eg $\frac{2 \times 3 \times 3 \times (3^{\frac{3}{2}})^{4n+6}}{2 \times 3 \times 3^{2(2n+8)}}$ or $\frac{3 \times 3^{\frac{3}{2}(4n+6)}}{3^{2(2n+8)}}$ $\sqrt{27}$ to be changed to a power of 3 and not $3\sqrt{3}$ unless recovered		3	M1 For 2 of: • writing 18 as 2×3^2 oe and 6 as 2×3 OR cancelling 6 & 18 fully • writing $\sqrt{27}$ as $3^{\frac{3}{2}}$ or $3 \times 3^{\frac{1}{2}}$ OR $(\sqrt{27})^{4n+6}$ as $(3^3)^{2n+3}$ or 3^{6n+9} • writing 9 as 3^2 OR 9^{2n+8} as $3^{2(2n+8)}$ or 3^{4n+16}
	eg $\frac{3 \times 3^{6n+9}}{3^{4n+16}}$ or $\frac{3^{6n+10}}{3^{4n+16}}$ or $\frac{3 \times 3^{1.5(4n+6)}}{3^{2(2n+8)}}$ or $\frac{3^2 \times 3^{6n+9}}{3 \times 3^{4n+16}}$ or $\frac{3^{6n+11}}{3^{4n+17}}$ oe or eg $3^{6n+11} = 3^x \times 3^{4n+17}$ oe	2n-6	-	M1 For a correct expression or equation using only powers of 3 (powers of 3 but not necessarily a single power) A1 oe eg 2(n - 3) dep on M1
				Total 3 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom