# 

| Please write clearly in | block capitals.                       |
|-------------------------|---------------------------------------|
| Centre number           | Candidate number                      |
| Surname                 |                                       |
| Forename(s)             |                                       |
| Candidate signature     | I declare this is my own work.        |
|                         | · · · · · · · · · · · · · · · · · · · |

## A-level CHEMISTRY

Paper 3

### Time allowed: 2 hours

#### Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

#### Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

#### Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90.

#### Advice

• You are advised to spend 70 minutes on Section A and 50 minutes on Section B.



| For Examiner's Use |      |  |
|--------------------|------|--|
| Question           | Mark |  |
| 1                  |      |  |
| 2                  |      |  |
| 3                  |      |  |
| 4                  |      |  |
| 5                  |      |  |
| 6                  |      |  |
| Section B          |      |  |
| TOTAL              |      |  |

|       | Section A                                                                                         |
|-------|---------------------------------------------------------------------------------------------------|
|       | Answer <b>all</b> questions in this section.                                                      |
| 0 1   | This question is about ethanedioic acid (HOOCCOOH) and the ethanedioate ion (-OOCCOO-).           |
| 0 1.1 | Ethanedioic acid reacts with propane-1,3-diol (HOCH $_2$ CH $_2$ CH $_2$ OH) to form a polyester. |
|       | Draw the repeating unit of this polyester. [2 marks]                                              |
|       |                                                                                                   |
|       |                                                                                                   |
|       |                                                                                                   |
|       |                                                                                                   |
|       |                                                                                                   |
| 01.2  | Explain why polyesters are biodegradable but polyalkenes are not biodegradable.<br>[2 marks]      |
|       |                                                                                                   |
|       |                                                                                                   |
|       |                                                                                                   |
|       |                                                                                                   |
|       |                                                                                                   |
|       |                                                                                                   |
|       |                                                                                                   |
|       |                                                                                                   |
|       |                                                                                                   |
|       |                                                                                                   |
|       |                                                                                                   |



**01.3** Sodium ethanedioate is used to find the concentration of solutions of potassium manganate(VII) by titration. The equation for this reaction is

 $2 \text{ MnO}_4^- + 16 \text{ H}^+ + 5 \text{ C}_2\text{O}_4^{2-} \rightarrow 2 \text{ Mn}^{2+} + 8 \text{ H}_2\text{O} + 10 \text{ CO}_2$ 

A standard solution is made by dissolving 162 mg of  $Na_2C_2O_4$  ( $M_r = 134.0$ ) in water and making up to 250 cm<sup>3</sup> in a volumetric flask.

25.0 cm<sup>3</sup> of this solution and an excess of sulfuric acid are added to a conical flask. The mixture is warmed and titrated with potassium manganate(VII) solution. The titration is repeated until concordant results are obtained. The mean titre is 23.85 cm<sup>3</sup>

Calculate the concentration, in mol dm<sup>-3</sup>, of the potassium manganate(VII) solution. [4 marks]

Concentration

Do not write outside the

box



| 0 1.4 | <b>Figure 1</b> shows the 25.0 cm <sup>3</sup> pipette used to measure the sodium ethanedioate solution.                                                                                                                              | Do not write<br>outside the<br>box |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|       | Figure 1                                                                                                                                                                                                                              |                                    |
|       | Graduation mark                                                                                                                                                                                                                       |                                    |
|       | On <b>Figure 1</b> , draw the meniscus of the solution when the pipette is ready to transfer 25.0 cm <sup>3</sup> of the sodium ethanedioate solution. [1 mark]                                                                       |                                    |
| 0 1.5 | Potassium manganate(VII) is oxidising and harmful.<br>Sodium ethanedioate is toxic.                                                                                                                                                   |                                    |
|       | <ul> <li>Suggest safety precautions, other than eye protection, that should be taken when:</li> <li>filling the burette with potassium manganate(VII) solution</li> <li>dissolving the solid sodium ethanedioate in water.</li> </ul> |                                    |
|       | Filling the burette                                                                                                                                                                                                                   |                                    |
|       | Dissolving the solid                                                                                                                                                                                                                  |                                    |
| 0 1.6 | State the colour change seen at the end point of each titration. [1 mark]                                                                                                                                                             |                                    |
|       |                                                                                                                                                                                                                                       |                                    |







Turn over ►

|       |                                                                                                                                                                                                                                                                                              | Do |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 0 1.8 | When $Na_2C_2O_4(aq)$ is added to a solution containing $[Fe(H_2O)_6]^{3+}$ ions, a reaction occurs in which all six water ligands are replaced by ethanedioate ions.                                                                                                                        | 01 |
|       | <ul> <li>Explain why the replacement of the water ligands by ethanedioate ions is favourable.</li> <li>In your answer refer to:</li> <li>the enthalpy and entropy changes for the reaction</li> <li>how the enthalpy and entropy changes influence the free-energy change for the</li> </ul> |    |
|       | reaction. [6 marks]                                                                                                                                                                                                                                                                          |    |
|       |                                                                                                                                                                                                                                                                                              |    |
|       |                                                                                                                                                                                                                                                                                              |    |
|       |                                                                                                                                                                                                                                                                                              |    |
|       |                                                                                                                                                                                                                                                                                              |    |
|       |                                                                                                                                                                                                                                                                                              |    |
|       |                                                                                                                                                                                                                                                                                              |    |
|       |                                                                                                                                                                                                                                                                                              |    |
|       |                                                                                                                                                                                                                                                                                              |    |
|       |                                                                                                                                                                                                                                                                                              |    |
|       |                                                                                                                                                                                                                                                                                              |    |
|       |                                                                                                                                                                                                                                                                                              |    |
|       |                                                                                                                                                                                                                                                                                              |    |
|       |                                                                                                                                                                                                                                                                                              |    |
|       |                                                                                                                                                                                                                                                                                              |    |
|       |                                                                                                                                                                                                                                                                                              |    |
|       |                                                                                                                                                                                                                                                                                              |    |
|       |                                                                                                                                                                                                                                                                                              | 1  |



|                                 | Do not write outside the |
|---------------------------------|--------------------------|
|                                 | box                      |
|                                 |                          |
|                                 |                          |
|                                 |                          |
|                                 |                          |
|                                 |                          |
|                                 |                          |
|                                 |                          |
|                                 |                          |
|                                 |                          |
|                                 |                          |
|                                 |                          |
|                                 |                          |
|                                 | 20                       |
|                                 |                          |
|                                 |                          |
|                                 |                          |
| Turn over for the next question |                          |
|                                 |                          |
|                                 |                          |
|                                 |                          |
|                                 |                          |
|                                 |                          |
|                                 |                          |
|                                 |                          |
|                                 |                          |
|                                 |                          |
|                                 |                          |
| <br>Turn over ►                 |                          |
| i urn över 🕨                    |                          |







|      | Tu                                                                          | rn over ► |                                |
|------|-----------------------------------------------------------------------------|-----------|--------------------------------|
|      |                                                                             |           |                                |
|      |                                                                             |           |                                |
|      |                                                                             |           |                                |
|      |                                                                             |           |                                |
|      |                                                                             |           |                                |
|      |                                                                             |           |                                |
|      |                                                                             |           |                                |
|      | Turn over for the next question                                             |           |                                |
|      |                                                                             |           |                                |
|      |                                                                             |           | 4                              |
|      |                                                                             | [1 mark]  | ]                              |
| 02.3 | State why each amino acid has a different $R_f$ value.                      | [1 mark]  |                                |
|      |                                                                             |           |                                |
|      | State how the amino acids can be made visible at the end of the experiment. | [1 mark]  |                                |
| 02.2 | The amino acids cannot be seen as they move during the experiment.          |           | o not wrii<br>utside th<br>box |

|       |                                                                                                                                                        | Do not write outside the |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 0 3   | This question is about ketones.                                                                                                                        | box                      |
| 0 3.1 | Solution ${\bf X}$ reacts with liquid ketones to form a crystalline solid.                                                                             |                          |
|       | This reaction can be used to identify a ketone if the crystalline solid is separated, purified by recrystallisation, and the melting point determined. |                          |
|       | Describe how the crystalline solid is separated and purified.                                                                                          |                          |
|       | [5 marks]                                                                                                                                              |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |
|       |                                                                                                                                                        |                          |



| 0 3 2  | Propagane (CH_COCH_) reacts with the weak acid UCN to form a hydroxymitrik                                                                                                              | Do not wi<br>outside ti<br>box |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|
| 0 3. 2 | Propanone (CH <sub>3</sub> COCH <sub>3</sub> ) reacts with the weak acid HCN to form a hydroxynitrile<br>This hydroxynitrile is usually made by reaction of propanone with KCN followed |                                |  |
|        | dilute acid, instead of with HCN                                                                                                                                                        | by                             |  |
|        | State the hazard associated with the use of KCN                                                                                                                                         |                                |  |
|        | Suggest a reason, other than safety, why KCN is used instead of HCN.                                                                                                                    | marks]                         |  |
|        | Hazard                                                                                                                                                                                  |                                |  |
|        | Why KCN is used                                                                                                                                                                         |                                |  |
|        |                                                                                                                                                                                         |                                |  |
|        |                                                                                                                                                                                         |                                |  |
| 03.3   | Outline the mechanism for the reaction of propanone with KCN followed by dilut                                                                                                          | e acid.<br><b>narks]</b>       |  |
|        |                                                                                                                                                                                         |                                |  |
|        |                                                                                                                                                                                         |                                |  |
|        |                                                                                                                                                                                         |                                |  |
|        |                                                                                                                                                                                         |                                |  |
|        |                                                                                                                                                                                         |                                |  |
|        |                                                                                                                                                                                         |                                |  |
|        |                                                                                                                                                                                         |                                |  |
|        |                                                                                                                                                                                         |                                |  |
|        |                                                                                                                                                                                         |                                |  |
|        |                                                                                                                                                                                         |                                |  |
|        |                                                                                                                                                                                         |                                |  |
|        |                                                                                                                                                                                         |                                |  |
|        |                                                                                                                                                                                         | 11                             |  |
|        |                                                                                                                                                                                         |                                |  |
|        | Turn over for the next question                                                                                                                                                         |                                |  |
|        |                                                                                                                                                                                         |                                |  |
|        | <u> </u>                                                                                                                                                                                |                                |  |



| 0 4  | This question is about Group 7 chemistry.                                                                               | Do not write<br>outside the<br>box |
|------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 04.1 | Give an equation for the reaction of solid sodium bromide with concentrated sulfuric acid to form bromine.              |                                    |
|      | State <b>one</b> observation made during this reaction.                                                                 |                                    |
|      | Equation [2 mark                                                                                                        | sj                                 |
|      |                                                                                                                         |                                    |
|      | Observation                                                                                                             |                                    |
|      |                                                                                                                         | _                                  |
|      |                                                                                                                         |                                    |
| 04.2 | A solution that is thought to contain chloride ions and iodide ions is tested.                                          |                                    |
|      | 1. Dilute nitric acid is added to the solution.                                                                         |                                    |
|      | 2. Aqueous silver nitrate is added to the solution.                                                                     |                                    |
|      | <ul><li>3. A pale yellow precipitate forms.</li><li>4. Excess dilute aqueous ammonia is added to the mixture.</li></ul> |                                    |
|      | 5. Some of the precipitate dissolves and a darker yellow precipitate remains.                                           |                                    |
|      | Give a reason for the use of each reagent.                                                                              |                                    |
|      | Explain the observations.                                                                                               |                                    |
|      | Give ionic equations for any reactions.                                                                                 |                                    |
|      | [5 mark                                                                                                                 | s]                                 |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         | —                                  |
|      |                                                                                                                         | —                                  |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         | _                                  |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |
|      |                                                                                                                         |                                    |





13

A mixture of methanoic acid and sodium methanoate in aqueous solution acts as an acidic buffer solution.

The equation shows the dissociation of methanoic acid.

 $HCOOH(aq) \rightleftharpoons HCOO^{-}(aq) + H^{+}(aq)$ 

Calculate the mass, in g, of sodium methanoate (HCOONa) that must be added to  $25.0 \text{ cm}^3$  of 0.100 mol dm<sup>-3</sup> methanoic acid to produce a buffer solution with pH = 4.05 at 298 K

For methanoic acid,  $pK_a = 3.75$  at 298 K

Assume that the volume of the solution remains constant.

[5 marks]

Do not write outside the

box

Mass

g

5









| 0 6.2 | Give <b>one</b> additional reagent that is needed to form any propanoic acid.          | [1 mark]           | Do not write<br>outside the<br>box |
|-------|----------------------------------------------------------------------------------------|--------------------|------------------------------------|
| 06.3  | State <b>two</b> more mistakes in the way the apparatus is set up in <b>Figure 4</b> . | [2 marks]          |                                    |
|       | 2                                                                                      |                    |                                    |
| 06.4  | State the purpose of the small glass beads in the flask in <b>Figure 4</b> .           | [1 mark]           |                                    |
|       | Question 6 continues on the next page                                                  |                    |                                    |
|       |                                                                                        | Turn over <b>b</b> |                                    |



| 06.5 | 5 After correcting the mistakes, the student heats a reaction mixture containing 6.50 propan-1-ol with an excess of the oxidising agent.<br>The propanoic acid separated from the reaction mixture has a mass of 3.25 g |             |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|      | State the name of the technique used to separate the propanoic acid from t<br>mixture.                                                                                                                                  | he reaction |
|      | Calculate the percentage yield of propanoic acid.                                                                                                                                                                       | [4 marks]   |
|      | Technique                                                                                                                                                                                                               |             |
|      |                                                                                                                                                                                                                         |             |
|      |                                                                                                                                                                                                                         |             |
|      |                                                                                                                                                                                                                         |             |
|      |                                                                                                                                                                                                                         |             |
|      |                                                                                                                                                                                                                         |             |
|      |                                                                                                                                                                                                                         |             |
|      |                                                                                                                                                                                                                         |             |
|      |                                                                                                                                                                                                                         |             |
|      |                                                                                                                                                                                                                         |             |
|      | Percentage yield                                                                                                                                                                                                        |             |
| 06.6 | State a simple chemical test that distinguishes the propanoic acid from the propan-1-ol.                                                                                                                                |             |
|      | Give <b>one</b> observation for the test with each substance.                                                                                                                                                           | [3 marks]   |
|      | Test                                                                                                                                                                                                                    |             |
|      | Propanoic acid                                                                                                                                                                                                          |             |
|      | Propan-1-ol                                                                                                                                                                                                             |             |
|      |                                                                                                                                                                                                                         |             |



13

|                        | Section B                                                                                                                                                                                                                                                   |                       |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                        | Answer <b>all</b> questions in this section.                                                                                                                                                                                                                |                       |
|                        |                                                                                                                                                                                                                                                             |                       |
| 1 2                    | answer per question is allowed.<br>answer completely fill in the circle alongside the appropriate answer.<br>THOD • WRONG METHODS • • •                                                                                                                     |                       |
| If you war             | nt to change your answer you must cross out your original answer as sh                                                                                                                                                                                      | nown.                 |
| lf you wis<br>as shown | h to return to an answer previously crossed out, ring the answer you no<br>· 🗩                                                                                                                                                                              | w wish to select      |
|                        | do your working in the blank space around each question but this will no<br>se additional sheets for this working.                                                                                                                                          | ot be marked.         |
| 0 7                    | Which does <b>not</b> involve the absorption of ultraviolet radiation or visib                                                                                                                                                                              | le light?<br>[1 mark] |
|                        | <b>A</b> The blue appearance of copper(II) sulfate solution in daylight.                                                                                                                                                                                    | 0                     |
|                        | <b>B</b> The breakdown of ozone in the upper atmosphere.                                                                                                                                                                                                    | 0                     |
|                        | <b>C</b> The ionisation of a molecule in a mass spectrometer.                                                                                                                                                                                               | 0                     |
|                        | <b>D</b> The reaction between chlorine and methane at room temperature                                                                                                                                                                                      | . 0                   |
| 0 8                    | Which statement about chloride ions is <b>not</b> correct?                                                                                                                                                                                                  | [1 mark]              |
|                        | <ul> <li>A They form a white precipitate with silver nitrate solution that is soluble in dilute aqueous ammonia.</li> <li>B They form an octahedral cobalt(II) complex when aqueous cobalt(II) ions are reacted with an excess of chloride ions.</li> </ul> | 0                     |
|                        | <b>C</b> They form when chlorine reacts with potassium bromide solution.                                                                                                                                                                                    |                       |
|                        | ,                                                                                                                                                                                                                                                           |                       |

Turn over ►







Do not write outside the 1 2 box Which statement about inorganic ionic compounds is always correct? [1 mark] **A** They dissolve in water to give neutral solutions.  $\bigcirc$ **B** They release energy when they melt.  $\bigcirc$ **C** They contain metal cations.  $\bigcirc$ **D** They form giant structures.  $\bigcirc$ 1 3 Which species has a lone pair of electrons on the central atom? [1 mark] A CO<sub>2</sub>  $\bigcirc$ B SO<sub>2</sub>  $\bigcirc$ C PCl<sub>6</sub><sup>-</sup>  $\bigcirc$ **D** SO<sub>4</sub><sup>2-</sup>  $\bigcirc$ 1 4 In which substance do covalent bonds break when it melts? [1 mark] A hexane  $\bigcirc$ B ice  $\bigcirc$ **C** iodine  $\bigcirc$ D silicon dioxide  $\bigcirc$ 1 5 In which molecule are all the atoms in the same plane? [1 mark] A CH<sub>3</sub>CHO  $\bigcirc$ B CH<sub>3</sub>NH<sub>2</sub>  $\bigcirc$  $C C_6H_5Cl$  $\bigcirc$  $D C_6H_5CH_3$  $\bigcirc$ 



| 1 6 | Which molecule has a permanent dipole?                                                                      |          |          | Do not write<br>outside the<br>box |
|-----|-------------------------------------------------------------------------------------------------------------|----------|----------|------------------------------------|
|     |                                                                                                             |          | [1 mark] |                                    |
|     | A BF <sub>3</sub>                                                                                           | 0        |          |                                    |
|     | B NH <sub>3</sub>                                                                                           | 0        |          |                                    |
|     | C SiCl <sub>4</sub>                                                                                         | 0        |          |                                    |
|     | D SO <sub>3</sub>                                                                                           | 0        |          |                                    |
| 1 7 | Which statement about $(CH_3)_2CHCH_2COOH$ is correct?                                                      |          | [1 mark] |                                    |
|     | A In aqueous solution it reacts with magnesium to form carbon dioxide.                                      | 0        |          |                                    |
|     | B It can form hydrogen bonds.                                                                               | 0        |          |                                    |
|     | <b>C</b> It has optical isomers.                                                                            | 0        |          |                                    |
|     | <b>D</b> It has the IUPAC name 2-methylbutanoic acid.                                                       | 0        |          |                                    |
| 1 8 | A mixture of 2 dm <sup>3</sup> of hydrogen and 1 dm <sup>3</sup> of oxygen is at room tempe                 | erature. |          |                                    |
|     | Which statement is correct?                                                                                 |          | [1 mark] |                                    |
|     | A There is no reaction to form water because the molecules do not collide with sufficient energy.           | 0        |          |                                    |
|     | <b>B</b> There is no reaction to form water because the molecules do not collide with sufficient frequency. | 0        |          |                                    |
|     | <b>c</b> The mean velocity of the hydrogen molecules is less than that of the oxygen molecules.             | 0        |          |                                    |
|     | <b>D</b> The partial pressure of each gas is the same.                                                      | 0        |          |                                    |
|     |                                                                                                             |          |          |                                    |
|     |                                                                                                             |          |          |                                    |
|     |                                                                                                             |          |          |                                    |
|     |                                                                                                             |          |          |                                    |
|     |                                                                                                             |          |          |                                    |
|     |                                                                                                             |          |          |                                    |



Do not write outside the 19 Which statement about the distribution curve of molecular energies in an ideal gas at a given temperature is correct? [1 mark] **A** There are no molecules with zero energy.  $\bigcirc$  $\bigcirc$ **B** The curve is symmetrical about the maximum. Changing the temperature has no effect on the position of the С  $\bigcirc$ maximum. **D** Most molecules have the mean energy.  $\bigcirc$ 2 0 Which statement about the addition of a catalyst to an equilibrium mixture is correct? [1 mark] **A** The activation energy for the reverse reaction increases.  $\bigcirc$ **B** The equilibrium constant for the forward reaction increases.  $\bigcirc$ **C** The rate of the reverse reaction increases.  $\bigcirc$ **D** The enthalpy change for the forward reaction decreases.  $\bigcirc$ 2 1 Which equation does **not** show the reduction of a transition metal? [1 mark] A TiCl<sub>4</sub> + 2 Mg  $\rightarrow$  Ti + 2 MgCl<sub>2</sub>  $\bigcirc$ **B** 2 FeCl<sub>3</sub> + 2 KI  $\rightarrow$  2 FeCl<sub>2</sub> + 2 KCl + I<sub>2</sub>  $\bigcirc$  $\textbf{C} \text{ MnO}_2 + 4 \text{ HCl} \rightarrow \text{ MnCl}_2 + \text{ Cl}_2 + 2 \text{ H}_2 \text{O}$  $\bigcirc$ **D** CoO + 4 HCl  $\rightarrow$  [CoCl<sub>4</sub>]<sup>2-</sup> + H<sub>2</sub>O + 2 H<sup>+</sup>  $\bigcirc$ Turn over for the next question



box





| 2 5 | Which compound n<br>of 1 mol of the com                            | needs the greatest amount of oxygen for the compl              | ete con | nbustion | Do not write<br>outside the<br>box |
|-----|--------------------------------------------------------------------|----------------------------------------------------------------|---------|----------|------------------------------------|
|     |                                                                    | pound.                                                         |         | [1 mark] |                                    |
|     | A ethanal                                                          |                                                                | 0       |          |                                    |
|     | B ethanol                                                          |                                                                | 0       |          |                                    |
|     | <b>C</b> ethane-1,2-diol                                           |                                                                | 0       |          |                                    |
|     | D methanol                                                         |                                                                | 0       |          |                                    |
| 2 6 | Which compound is acidified potassium                              | s produced when 1-phenylethanol reacts with<br>dichromate(VI)? |         | [1 mark] |                                    |
|     | A C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> CH <sub>2</sub> OH | I                                                              | 0       |          |                                    |
|     | B C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> CHO                |                                                                | 0       |          |                                    |
|     | $\mathbf{C}$ C <sub>6</sub> H <sub>5</sub> COCH <sub>3</sub>       |                                                                | 0       |          |                                    |
|     | D C <sub>6</sub> H <sub>5</sub> CH(OH)CH                           | 3                                                              | 0       |          |                                    |
| 2 7 | Which is the correc<br>homologous series                           | t general formula for non-cyclic compounds in the<br>?         |         | [1 mark] |                                    |
|     | A alcohols                                                         | $C_nH_{2n+2}O$                                                 | 0       |          |                                    |
|     | B aldehydes                                                        | $C_nH_{2n+1}O$                                                 | 0       |          |                                    |
|     | C esters                                                           | $C_nH_{2n+1}O_2$                                               | 0       |          |                                    |
|     | <b>D</b> primary amines                                            | $C_nH_{2n+2}N$                                                 | 0       |          |                                    |
|     |                                                                    |                                                                |         |          |                                    |
|     |                                                                    |                                                                |         |          |                                    |
|     |                                                                    | Turn over for the next question                                |         |          |                                    |
|     |                                                                    |                                                                |         |          |                                    |











Turn over ►













| Question<br>number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |
|--------------------|--------------------------------------------------------------------------------------|
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |



| Question<br>number | Additional page, if required.<br>Write the question numbers in the left-hand margin.                                                                                                                                                                                               |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    | Copyright information                                                                                                                                                                                                                                                              |
|                    | For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.                                     |
|                    | Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team. |
|                    | Copyright © 2021 AQA and its licensors. All rights reserved.                                                                                                                                                                                                                       |



