

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

CHEMISTRY A

F325

Unit F325: Equilibria, Energetics and Elements

Specimen Mark Scheme

The maximum mark for this paper is **100**.

S

Question Number	Answer	Max Mark
1(a)(i)	O ₃ : Exp 2 has 4 times [H ₂] as Exp 1 and rate increases by 4 \checkmark ,	
	so order = 1 with respect to $O_3 \checkmark$	
	C_2H_4 : Exp 3 has 2 x [C_2H_4] and 2 x [O_3] as Exp 2; and rate has increased by 4 \checkmark ,	
	so order = 1 with respect to $C_2H_4 \checkmark$	
	rate = $k [O_3] [C_2H_4] \checkmark$	[5]
(ii)	use of k = rate / [O ₃] [C ₂ H ₄] = 1.0 x 10 ⁻¹² / (0.5 x 10 ⁻⁷ x 1.0 x 10 ⁻⁸) to obtain a calculated value \checkmark $k = 2 \times 10^3 \checkmark$	
	$K = 2 \times 10^{-1} \text{ v}$ units: dm ³ mol ⁻¹ s ⁻¹ \checkmark	[3]
(iii)	rate = $1.0 \times 10^{-12} / 4 = 2.5 \times 10^{-13} \text{ (mol dm}^{-3} \text{ s}^{-1}) \checkmark$	[1]
(iv)	rate increases and k increases \checkmark	[1]
(b)	$\begin{array}{l} 1\frac{1}{2}O_{2}(g) \longrightarrow O_{3}(g)/\\ O_{2}(g) \ + \ \frac{1}{2}O_{2}(g) \longrightarrow O_{3}(g) \ \checkmark \end{array}$	
	NO is a catalyst \checkmark as it is (used up in step 1 and) regenerated in step 2/	
	not used up in the overall reaction \checkmark allow 1 mark for 'O/NO ₂ with explanation of regeneration.'	[3]
2(a)(i)	H⁺/proton donor √	[1]
(ii)	partially dissociates/ionises ✓	[1]
(b)	$C_6H_5OH(aq)$ + $OH^-(aq)$ ⇒ $C_6H_5O^-(aq)$ + $H_2O(I)$ acid 1 base 2 base 1 acid 2 \checkmark	[1]

Question Number	Answer	Max Mark
(c)(i)	<i>K</i> _a = [C ₆ H ₅ O [−] (aq)] [H ⁺ (aq)] / [C ₆ H ₅ OH(aq)] ✓	[1]
(ii)	$\begin{split} M_{\rm r} {\rm C_6H_5OH} &= 94 \checkmark \\ [{\rm C_6H_5OH(aq)}] \ 4.7/94 \ = \ 0.050 \ {\rm mol} \ {\rm dm}^{-3} \checkmark \\ 1.3 {\rm x} \ 10^{-10} \ \approx \ [{\rm H^+}(aq)]^2 / \ 0.050 \ {\rm mol} \ {\rm dm}^{-3} \checkmark \ (`=` {\rm sign} \ {\rm is \ acceptable}) \\ [{\rm H^+}] \ = \ \sqrt{\{\ (1.3 {\rm x} \ 10^{-10}) \ {\rm x} \ (0.050)\ \}} \ = \ 2.55 {\rm x} \ 10^{-6} \ {\rm mol} \ {\rm dm}^{-3} \checkmark \\ p{\rm H} \ = \ -{\rm log}[{\rm H^+}] \ = \ -{\rm log} \ 2.55 {\rm x} \ 10^{-6} \ = \ 5.59 \checkmark \\ 3 \ {\rm marks:} \ [{\rm H^+}] \ ; \ p{\rm H} \ {\rm expression} \ ; \ {\rm calc} \ {\rm of} \ p{\rm H} \ {\rm from} \ [{\rm H^+}] \end{split}$	[5]
(d)	$[H^{+}(aq)] = 1.99 \times 10^{-9} \text{ mol } dm^{-3} \checkmark$ $[C_{6}H_{5}O^{-}(aq)] = K_{a} [C_{6}H_{5}OH(aq)] / [H^{+}(aq)] \checkmark$ $[C_{6}H_{5}O^{-}(aq)] = 0.13 \text{ mol } dm^{-3} \checkmark$ <i>Calculation should use half the original concentration of phenol to find the concentration of sodium phenoxide in the buffer. This should then be doubled back up again.</i> <i>Do not penalise an approach that uses the original concentration of phenol in the expression above.</i>	[3]
(e)	Na/NaOH because some of the hexylresorcinol will react producing a mixture of the acid and the salt/conjugate base ✓ or	
	mono/di salt of hexylresorcinol because the acid and its salt/conjugate base makes a buffer \checkmark	[1]
3(a)	rate of forward reaction = rate of reverse reaction \checkmark concentrations of reactants and products are constant but they are constantly interchanging \checkmark	[2]
(b)(i)	$K_{\rm c} = [CH_3OH] / [CO] [H_2]^2 \checkmark$	[1]
(ii)	use of $K_c = [CH_3OH] / [CO] [H_2]^2$ and moles to obtain a calculated value \checkmark convert moles to concentration by \div 2: [CO] = 3.10 x 10 ⁻³ mol dm ⁻³ ; [H ₂] = 2.60 x 10 ⁻⁵ mol dm ⁻³ ; [CH ₃ OH] = 2.40 x 10 ⁻² mol dm ⁻³ \checkmark	
	$K_{\rm c} = [2.60 \text{ x } 10^{-5}] / [3.10 \text{ x } 10^{-3}] [2.40 \text{ x } 10^{-2}]^2 = 14.6 / 14.56 \checkmark$ If moles not converted to concentration, calculated $K_{\rm c}$ value = 3.64 (scores 1st and 3rd marks) units: dm ⁶ mol ⁻² \checkmark	[4]

Question Number	Answer	Max Mark
(c)(i)	fewer moles of gas on right hand side \checkmark	[1]
(ii)	None ✓	[1]
(d)(i)	moved to left hand side/reactants increase/less products \checkmark	[1]
(ii)	ΔH negative because high temperature favours the endothermic direction \checkmark	[1]
(e)(i)	$CH_3OH + 1\frac{1}{2}O_2 \longrightarrow CO_2 + 2H_2O\checkmark$	[1]
(ii)	adds oxygen/oxygenated ✓	[1]
4(a)(i)	Ca ⁺ is smaller than Ca/ proton : electron ratio in Ca ⁺ > Ca ✓ greater attraction from nucleus ✓	[2]
(ii)	"oxide" ion, O [−] and electron are both negative \checkmark hence energy is required to overcome repulsion \checkmark	[2]
(b)	completes Born-Haber cycle showing 1st IE [↑] 2nd IE [↑] 1st EA \downarrow 2nd EA [↑] and LE $\downarrow \checkmark \checkmark \checkmark$ (lose 1 mark for each error/omission) LE = $-\checkmark$ 3451 kJ mol ⁻¹ \checkmark	[5]
(c)	differences in size of lattice enthalpies linked to ionic sizes/attraction using more/less exothermic rather than bigger or smaller. \checkmark Mg ²⁺ is smaller/Mg ²⁺ has greater charge density \checkmark hence has stronger attraction for O ^{2-\checkmark}	[3]
(d)(i)	525 kJ mol ^{−1} √	[1]
(ii)	193.6 J K ⁻¹ mol ⁻¹ ✓	[1]
(iii)	uses $\Delta G = \Delta H - T\Delta S \checkmark$ To be feasible, $\Delta G = 0$ or $\Delta G < 0 \checkmark$ minimum $T = \Delta H / \Delta S \checkmark$ Converts ΔS from J to kJ/÷1000 or converts ΔH from kJ to J \checkmark 2712 K/ 2438 °C / 2439 °C \checkmark (units essential)	[5]

Question Number	Answer	Max Mark
5(a)(i)	oxidation: Fe \rightarrow Fe ²⁺ + 2e ⁻ \checkmark	
•(•)(!)	reduction: $V^{3+} + e^- \rightarrow V^{2+} \checkmark$	[2]
(ii)	$E_{\rm cell}$ = 0.18 V \checkmark	[1]
(b)(i)	system III x 2 and reversed + system IV \checkmark	
(-/()	$2 H_2 + O_2 \rightarrow 2H_2O/$	
	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O \checkmark$	[2]
(ii)	advantages:	
	only H ₂ O formed/ non-polluting	
	greater efficiency ✓	
	disadvantages:	
	H_2 difficult to store \checkmark	
	H_2 difficult to manufactured initially /	
	limited life cycle of H_2 adsorber/absorber \checkmark	[4]
6(a)	empirical formula N : O = 63.64/14 : 36.36/16 ✓	
	$= 4.56 : 2.27 = 2 : 1$. Empirical formula = N ₂ O \checkmark	
	molecular formula	
	$M_{\rm r}$ of gas = 1.833 x 24 = 44 \checkmark (calc 43.992)	
	with these two pieces of evidence, assume that molecular formula = N_2O	[3]
(b)	any chemical that reacts to produce gas:	
	e.g. carbonate and $CO_2 \checkmark$	
	accept: metal more reactive than Pb and H_2	
	balanced equation to match chemical added \checkmark	[2]
(c)	$M_{\rm r}({\rm Lidocaine}) = 236 \checkmark$	
	moles Novocaine = $100 \times 10^{-3}/236 = 4.24 \times 10^{-4} \checkmark$	
	concentration of Novocaine = $4.24 \times 10^{-4} \times (1000/5)$	101
	= $0.0847/0.0848$ mol dm ⁻³ \checkmark	[3]

Question Number	Answer	Max Mark
(d)	mass C = 12 x 3.74/44.0 = 12 x 0.085 = 1.02 g ✓	
	mass H = 2/18 x 0.918 = 0.102 g ✓	
	mass O = 1.394 – (1.020 + 0.102) = 0.272 g	
	ratio C : H : O = 1.02/12 : 0.102/1 : 0.272/16 ✓	
	= 0.0850 : 0.102 : 0.0170 / 5 : 6 : 1 / C₅H ₆ O ✓	
	$C_5H_{10}O$ has relative mass of 82 M_r is 164 = 2 x 82	
	∴ molecular formula = $C_{10}H_{12}O_2 \checkmark$	[5]
7(a)(i)	transition element: has at least one ion with a partly filled d-orbital \checkmark example showing electronic configuration with d orbital as between d ¹ – d ⁹ \checkmark	[2]
	complex ion: a central metal ion surrounded by ligands with an example. ✓ ligand: molecule/ion with lone pair of electrons capable of forming co- ordinate/dative bonds to a metal ion ✓	[2]
(ii)	precipitation: equation ✓ colour of precipitate ✓	[2]
	ligand substitution: equation \checkmark colour of substituted complex \checkmark	[2]
	redox: equation ✓ colour change ✓	[2]
	\checkmark The candidate clearly links observations to provide evidence for two reactions discussed. \checkmark	[1]
		[11]

Question Number	Answer	Max Mark
(b)	complex ions: octahedral example ✓	
	with 3-D diagram ✓	[2]
	tetrahedral example ✓ with 3-D diagram ✓	[2]
	square planar example (see also below) ✓ with 3-D diagram ✓	[2]
	stereoisomerism: <i>cis-trans</i> example, e.g. Ni(NH ₃) ₂ Cl ₂ ; platin with 3-D diagram \checkmark optical example, e.g. Ni(en) ₃ ²⁺ \checkmark with 3D diagrams \checkmark	[3]
	${\mathscr N}$ The candidate clearly links features on the diagrams with a characteristic of the stereoisomerism involved \checkmark	[1] [Max: 9]
	Paper Total	[100]