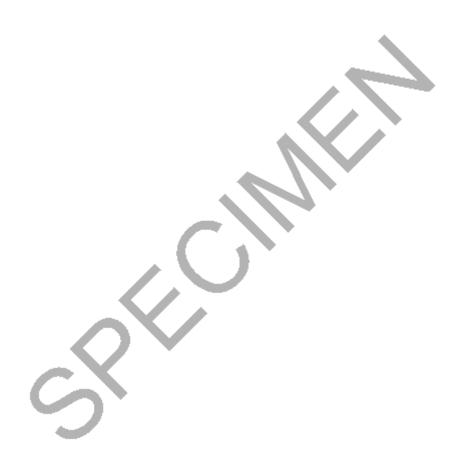


OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary GCE


BIOLOGY

F212 MS

Unit F212: Molecules, Biodiversity, Food and Health

Specimen Mark Scheme

The maximum mark for this paper is **100**.

This document consists of 10 printed pages and 2 blank pages.© OCR 2007 QAN 500/2269/6OCR is an exempt Charity

Question Number	Answer breaking (glycosidic) bond; R if incorrect named bond glycosidic / correct bond drawn; treat 'covalent' = neutral addition of water / H ₂ O; Teat 'covalent' = neutral				Max Mark	
1(a)					max[2]	
(b)	accept $\checkmark = yes$ $x = no$ each correct row = I mark					
	Γ	gum arabic	amylose	cellulose	glycogen	
	branched structure		no;		yes;	
	heteropolysaccharide		no;	X	no;	
	found in animals/plants		plants;		animals;	
	function in organism		storage / reserve; R 'energy' alone	structural / strength / stops bursting / cell wall / support / gives cell shape; R protects		
				rigid = neutral		[4]

Question Number	Answer	Max Mark
(c)(i)	crush (small amount of) seed pod; add (small volume of) biuret, A / NaOH, <u>and</u> biuret, B / CuSO ₄ ; positive = colour change from blue to, mauve/purple;	max[2]
(c)(ii) (d)	preparation - allow 2 marks max: crush, samples / leaves and seed pods, separately with water; use same mass of each / AW and use same volume of water; filter; method - allow 4 marks max: add benedict's reagent to filtrate; A CuSO₄ in alkaline solution <u>excess</u> reagent used / stated volume; same volume added; heat in a water bath/ at near boiling; for stated time (up to 5 min); analysis - allow 2 marks max: <u>either</u> colour change from blue to green / yellow / orange / red; shows increasing concentration of reducing sugar; Or use of colorimeter to compare intensity of blue colour in liquid portion; red filter used in colorimeter; humans eat only the seeds so do not gain, nutrition / energy, from, leaves / pods; seeds maybe deficient in (some) essential amino acids; cattle better at digesting, plant matter / seeds / leaves / pods, than humans / AW; 	[8]
	 meat (from cattle) provides more essential amino acids for humans (than plant material)/AW; cattle also produce milk; AVP; e.g. cattle naturally roam to find food / intensive labour needed for human 	
	collection of plant material;	max [3]
	T	otal: [19]

Question Number	Answer	Max Mark
2(a)(i)	<u>deoxyribose</u> sugar; a nitrogenous/ nitrogen containing, base / named base; ecf for thiamine phosphate group;	
	AVP; e.g. deoxyribose is a pentose sugar/correct diagram of same	
	accept A, T, G and C in place of names.	max[3]
(a)(ii)	hydrogen bonds between bases; <u>complementary</u> base pairing; purine to pyrimidine; A to T <u>and</u> G to C;	
	 AVP; further detail e.g. 2 H bonds between A and T / 3 H bonds between C and G DNA polymerase ribose (instead of deoxyribose); 	max[4]
(b)	uracil /U, replaces thymine; single stranded (instead of double stranded); smaller molecule/ different 3-D structure to DNA;	[3]
(c)(i)	any three from the following: award mark only if structure related to suitable function	
	variable region is antigen binding site; ${f R}$ receptors / 'sticky ends' / active	
	site (shape of) variable region specific to antigen / amino acid sequence (of variable region) gives, complementary / matching, shape;	
	hinge region allows flexibility in binding / AW;	
	constant region, for binding to receptors on cells / phagocytes / mast cells;	
	AVP; e.g. disulphide bonds hold polypeptide chains together	[3]
(c) (ii)	human and chimp are more closely related;	
	common ancestor is more recent; less time for, mutations / variation, to arise;	[2]
		otal: [15]

Question Number	Answer	Max Mark
3(a)	award two marks if correct answer (12) is given 6/30 / 6/0.5 x 60; 12;	[2]
(b)	assume candidates are referring to the initial rate unless otherwise stated.	
	concentration of, substrate / H_2O_2 , molecules, high / higher at start; more chance of, substrate/ H_2O_2 , molecules entering active site; all / most, active sites occupied;	[3]
(c)	 at optimum temp - max 3 marks molecules in culture have kinetic energy; (frequent) collisions between enzyme and substrate molecules; more enzyme-substrate complexes formed; max rate of reaction / protein production achieved; at higher temp - max 5 marks (at higher temperature) molecules have more kinetic energy / collisions occur more frequently and with more energy; molecules vibrate and, bonds/ hydrogen bonds, broken; tertiary structure / 3D shape, of enzymes altered; active site loses, precise / complementary, shape; enzymes are denatured; substate molecule no longer fits active site; (may be) irreversible so reaction/ protein production stops; A fungus destroyed 	[8]
		Total: [13]
	5	

Question Number	Answer	Max Mark
4(a)	number of different species present/AW;	[1]
(b)(i)	0.62;;	
	award one mark if working correct but answer wrong	[2]
(ii)	award marks only if comparative points given	
	 hedge vegetation has greater species richness than wheat; numbers of insects under hedge more evenly spread compared with numbers in wheat field / AW; more niches for insects in vegetation under hedge/ more species of plants grow under hedge than in wheat field/ AW; ref. use of, chemicals/ insecticides/herbicides, on wheat and not on hedge vegetation; 	
	AVP; e.g. ref. plants under hedge more likely to be wild/native compared with wheat crop / AW	max[3]
(c)	Any four from the following: ref. random samples; sweep net; repeats in each habitat; ref need for same technique in each habitat; classify and count numbers of each species(of insect) caught;	
	AVP; e.g. further detail of sampling such as use of suitable chemical to stun the insects;	max[5]
(d) (i)	ref to (bio)diversity values and need for conservation; ref to endangered species and need for protection; ref to laws concerning endangered species (that might affect decision); ref to planning stipulation e.g. translocation of species;	
(d) (ii)	AVP; e.g. example of type of local planning decision; damage to environment / ecosystem; disturbance to animals in area; habitats best left alone / left to nature/AW;	max[3]
	AVP; e.g. may advertise presence of endangered species to collectors	max[2]
	T	otal: [16]

Question Number	Answer		
5(a)	Animalia / animal(s); Phylum; A phylum Order; A order <i>Panthera</i> ; species;	[5]	
(b)	Fungi;A fungiProtoctista;A protoctists / protista / protists	[2]	
(c)	scientific knowledge changes as new discoveries are made / AW; technological developments lead to new discoveries; named technological development; e.g. microscopes, new DNA technology ref. (legitimate) differences of opinion amongst biologists/scientists /taxonomists; ref. true bacteria (bacteria) and archaea; ref. differences between bacteria and archaea; e.g. different RNA polymerase, membrane structure, flagellae, histones		
	AVP; e.g. other relevant detail of prokaryotes	max[4]	
(d)(i)	change in DNA/ genetic material, through spontaneous mutation;	[1]	
(d)(ii)	DNA/ genetic material, determines protein structure/controls protein synthesis; (mutation) changes protein structure/ enzyme structure/ antigen structure;	[2]	
(e)	any four from following: development of new strains (of bacterium)/ bacteria multiply rapidly; development of resistance to antibiotics; need to find more antibiotics; need wide range of antibiotics for one species of bacterium; vaccines no longer effective;		
	AVP; e.g. antibodies may not recognise changed antigens / no longer effective / ref. MRSA	[4]	
		otal: [18]	

Question Number	Answer	Max Mark
6(a)(i)	any three from following:	
	education on HIV / AIDS less effective;	
	sexual attitudes / number of partners ;	
	availability of condoms;	
	poverty / poorer / less money ; sex industry ;	
	less primary health care / less likely to be diagnosed ;	
	AVP; e.g. ref to unscreened or untreated blood	
	unsterilised needles or surgical apparatus	
	civil war / rape no alternative to breast feeding	
	R access to drugs for treatment	
	R no vaccine	[0]
	R ref to intravenous drug addiction	[3]
(ii)	any three from the following:	
	to find out where rates, are highest / people are most at risk ;	
	to keep track of infection rates over time/ AW;	
	to see where disease is likely to spread / where epidemic most likely;	
	to help research (into how it is spread / into effectiveness of drugs);	
	to allow organisations to provide, aid / health care, where it is needed most	
	, to allow organisations to provide education (about disease) where it is	
	needed most;	
	AVP; e.g. tourist industry	[3]
(b)	find person who is immune and isolate gene that provides immunity;	
	use gene to find shape of protein that provides immunity and manufacture	
	protein to use as vaccination / cure ;	
	find shape of CD4 receptor;	
	develop drug to block receptor;	2 ma
		Total: [

Question Number	Answer	Max Mark
7(a)(i)	species numbers have become low / habitat reduced, qualified; population has reached a critical level / AW; there is a risk of extinction;	max [2]
(ii)	any two from the following:	
	shot to prevent damage to farmland; A other appropriate reason habitat destruction; hunting; poaching; killed for horn; A ivory killed, for meat / hides;	[2]
(b)	any two from the following:	
	signatory countries made it illegal to, kill / poach, rhinos; ban placed on trade (in horns); increased cooperation between countries; permits / licenses, issued; education / raising awareness;	[2]
(c)	source of food; source of plant varieties for cross breeding / selection; to breed in disease resistance / pest resistance; to breed in other named characteristic; e.g. higher protein content / quicker growth source of natural predators to pests; AVP;	max [4]
	Total:	[10]
	S	

Question	AO1	AO2	AO3	Total
1(a)	2			2
1(b)	3	1		4
1(c)(i)			2	2
1(c)(ii)	3	2	3	8
1(c)(iii)		3		3
2(a)(i)	3			3
2(a)(ii)	4			4
2(b)	3			3
2(c)(i)	3			3
2(c)(ii)		2		2
3(a)		2		2
3(b)		3		3
3(c)	3	5		8
4(a)	1			1
4(b)(i)		2		2
4(b)(ii)		3		3
4(c)			5	5
4(d)(i)	1	2		3
4(d)(ii)		2		2
5(a)		5		5
5(b)	2			2
5(c)	2	2		4
5(d)(i)				1
5(d)(ii)	2	r		2
5(e)		4		4
6(a)(i)		2		3
6(a)(ii)		4		4
6(b)		2		2
7(a)(i)	2			2
7(a)(ii)	2			2
7(b)	2			2
7(c)	2	2		4
Totals	42	48	10	100
Targets	42	48	10	100

Assessment Objectives Grid (includes QWC)

BLANK PAGE

BLANK PAGE