

Mark Scheme (Results)

Summer 2019

Pearson Edexcel GCE In A level Further Mathematics Paper 9FM0/4B

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019 Publications Code 9FM0_4B_1906_MS All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

1(a)		Mean = 504	B1	1.1b	
		1.96	B1	3.3	
		$504 \pm \frac{5.4}{\sqrt{8}} \times "1.96"$	M1	2.1	
		(500.258, 507.742)	A1	1.1b	
			(4)		
(b)		505 is in the confidence interval therefore there is evidence that the machine is working properly	B1ft	2.2b	
			(1)		
	(c)	5% oe	B1	1.1b	
			(1)		
((d)	s needs to be used instead of σ and a t-value instead of the z value	B1	3.3	
		since the sample is small therefore you can't use the normal distribution	B1	3.5b	
			(2)		
	(8 marks)				
			(8 n	narks)	
Note	es:		(8 m	narks)	
Note (a)	es: B1	504 may be seen in part(b)	(8 m	narks)	
Note (a)	es: B1 B1	504 may be seen in part(b)For realising a normal distribution must be used as a model and finding value 1.96	(8 m	narks)	
Note (a)	es: B1 B1 M1	504 may be seen in part(b) For realising a normal distribution must be used as a model and finding value 1.96 For $504 \pm \frac{5.4}{\sqrt{8}} \times "z$ value". $ z > 1$ May be implied by a correct CI	(8 m	narks)	
Note (a)	es: B1 B1 M1 A1	504 may be seen in part(b)For realising a normal distribution must be used as a model and finding value 1.96For $504 \pm \frac{5.4}{\sqrt{8}} \times "z$ value". $ z > 1$ May be implied by a correct CI awrt 500.26 and 507.74 NB using t gives 500.29 and 507.71	(8 m	narks)	
Note (a) (b)	es: B1 B1 M1 A1 B1ft	504 may be seen in part(b)For realising a normal distribution must be used as a model and finding value 1.96For $504 \pm \frac{5.4}{\sqrt{8}} \times "z$ value". $ z > 1$ May be implied by a correct CIawrt 500.26 and 507.74NB using t gives 500.29 and 507.71Drawing a correct inference (ft) using their answer to part (a) and the 50 question. Reason must be given. Ignore incorrect non – contextual	(8 m the correction of the cor	e	
Not (a) (b) (c)	es: B1 B1 M1 A1 B1ft B1	504 may be seen in part(b)For realising a normal distribution must be used as a model and finding value 1.96For $504 \pm \frac{5.4}{\sqrt{8}} \times "z$ value". $ z > 1$ May be implied by a correct CIawrt 500.26 and 507.74NB using t gives 500.29 and 507.71Drawing a correct inference (ft) using their answer to part (a) and the 50 question. Reason must be given. Ignore incorrect non – contextual5%	(8 m the correction of the cor	e	
Not (a) (b) (c) (d)	es: B1 B1 M1 A1 B1ft B1 B1	504 may be seen in part(b)For realising a normal distribution must be used as a model and finding value 1.96For $504 \pm \frac{5.4}{\sqrt{8}} \times "z$ value". $ z > 1$ May be implied by a correct CIawrt 500.26 and 507.74NB using t gives 500.29 and 507.71Drawing a correct inference (ft) using their answer to part (a) and the 50 question. Reason must be given. Ignore incorrect non – contextual5%create new model by using s and t. Allow if state use CI $\mu \pm \frac{s}{\sqrt{n}} \times "t"$	(8 m) the correction of the correction of	e 4.44	
Not (a) (b) (c) (d)	es: B1 B1 M1 A1 B1ft B1 B1 B1	504 may be seen in part(b) For realising a normal distribution must be used as a model and finding value 1.96 For $504 \pm \frac{5.4}{\sqrt{8}} \times "z$ value". $ z > 1$ May be implied by a correct CI awrt 500.26 and 507.74 NB using t gives 500.29 and 507.71 Drawing a correct inference (ft) using their answer to part (a) and the 50 question. Reason must be given. Ignore incorrect non – contextual 5% create new model by using s and t. Allow if state use CI $\mu \pm \frac{s}{\sqrt{n}} \times "t"$ and t = 2.365	(8 m) the correction of the correction of	e 4.44	
Not (a) (b) (c) (d)	es: B1 B1 M1 A1 B1ft B1 B1 B1 B1	504 may be seen in part(b) For realising a normal distribution must be used as a model and finding value 1.96 For $504 \pm \frac{5.4}{\sqrt{8}} \times "z \text{ value"}$. $ z > 1$ May be implied by a correct CI awrt 500.26 and 507.74 NB using t gives 500.29 and 507.71 Drawing a correct inference (ft) using their answer to part (a) and the 50 question. Reason must be given. Ignore incorrect non – contextual 5% create new model by using s and t. Allow if state use CI $\mu \pm \frac{s}{\sqrt{n}} \times "t"$ and t = 2.365 For recognising that the sample is small	(8 m) the correction of the correction of	e 4.44	

				1	
20	(a)	$S_{ww} = 13447 - \frac{303^2}{8} = 1970.875$			
		$r = \frac{269.5}{\sqrt{42 \times 1970.875}}$	M1	1.1b	
		r = 0.9367 awrt 0.937	A1	1.1b	
			(2)		
()	b)	As the amount of fertiliser increases the yield increases	B1	3.2a	
			(1)		
(c)	$b = \frac{269.5}{42} \ \left[= 6.41666 \right]$	M1	3.3	
		$a = \frac{303}{8} - b'\frac{28}{8} = 15.41666$	M1	1.1b	
		w = 15.4 + 6.42 f	A1	1.1b	
			(3)		
(d)		3.21 tonnes	B1ft	1.1b	
			(1)		
(e)		The residual plot is close to an 'n' shape or the <u>residuals</u> appear not to be randomly scattered	M1	2.4	
		The model in part(c) is unlikely to be suitable	A1	2.2b	
			(2)		
	f)	Fit a curve rather than a line	B1	3.5c	
			(1)		
			(10		
			(10 n	narks)	
	es: M1	Complete correct method for finding r			
(<i>a</i>)		for awrt 0.937			
(b)	B1	Correct contextual statement			
(c)	M1	For use of a correct model is a correct expression for b			
	M1	For use of a correct model ie a correct expression (ft) for a			
	A1	For a correct model $w = 15.4 + 6.42$ f with awrt 15.4 and awrt 6.42			
(d)	B1ft	awrt 3.21 condone - 3.21			
(e)	M1	Explaining a reason for their conclusion eg there is a pattern/trend in	the residu	als	
		Do not accept residuals not close to zero			
	A1	concluding it is not valid oe			
(f)	B1	A comment about not using a linear line eg use a quadratic model, loga exponential	rithmic gr	aph	

2	(-)			
<u>3(a)</u>		$\mathbf{H}_0: \boldsymbol{\sigma}_A^2 = \boldsymbol{\sigma}_B^2, \ \mathbf{H}_1: \boldsymbol{\sigma}_A^2 \neq \boldsymbol{\sigma}_B^2$	B1	2.5
		$s_{\rm A}^2 = \frac{1}{24} \left(1637.37 - 25 \times \left(\frac{194.7}{25}\right)^2 \right) = 5.0436$	M1 A1	2.1 1.1b
		$s_{\rm B}^2 = \frac{1}{25} \left(2031.19 - 26 \times \left(\frac{227.5}{26}\right)^2 \right) = 1.6226$	A1	1.1b
		$\frac{s_A^2}{s_B^2} = 3.108$	M1	3.4
		critical values upper tail $F_{24,25} = 1.96$	B1	1.1b
		There is evidence that the two variances are different.	A1ft	2.2b
			(7)	
(b)	The yields are normally distributed.	B1	1.2
			(1)	
			(8 n	narks)
Note	es:			
(a)	B1	both hypotheses correct using σ or σ^2		
M1 Using a correct method for either s_A^2 or s_B^2 . May be implied by a correct v				
A1 awrt 5.04				
A1 awrt 1.62				
M1 Using the F-distribution as the model eg $\frac{s_A^2}{s_B^2}$ (allow $\frac{s_B^2}{s_A^2}$ [=0.321]				
B1 awrt 1.96 or 0.506 must match their method				
	A1ft	Drawing a correct inference following through their CV and value for	$\frac{\mathbf{s}_{\mathrm{B}}^{2}}{\mathbf{s}_{\mathrm{A}}^{2}} \text{ or } \frac{\mathbf{s}_{\mathrm{A}}^{2}}{\mathbf{s}_{\mathrm{B}}^{2}}$	
Allow $\sigma_{\rm B}^2 \neq \sigma_{\rm A}^2$ Allow standard deviation instead of Var. Do not allow $\sigma_{\rm B}^2 = \sigma_{\rm A}^2$			w $\sigma_{\rm B}^2 = \sigma_{\rm B}^2$	2 A
(b)	B1	recalling the fact that the variable yield needs to be normally distribute	d	

Que	estion	Scheme	Marks	AOs
2	4(a)	$k\left(2^{3}-\frac{3}{8}2^{4}\right)=1$	B1*	1.1b
		2k = 1		
		$k = \frac{1}{2} *$		
		Or $\frac{1}{2} \left(2^3 - \frac{3}{8} 2^4 \right) = 1$ $\therefore k = \frac{1}{2} *$	(B1*)	
			(1)	
	(b)	$f(x) = k \left[3x^2 - \frac{3}{2}x^3 \right]$	M1	2.1
		(i) $\int_{0}^{2} xf(x) dx = k \int_{0}^{2} \left(3x^{3} - \frac{3}{2}x^{4} \right) dx$	M1d	1.1b
		$= \left[\frac{3x^4}{8} - \frac{3x^5}{20}\right]_0^2$		
		$=\frac{6}{5}$ or 1.2	A1	1.1b
		(ii) $3x - \frac{9x^2}{4} = 0$	M1d	3.1a
		$\mathbf{x}\left(3-\frac{9\mathbf{x}}{4}\right)=0$	M1d	1.1b
		$x = 0 \text{ or } \frac{4}{3} \qquad \therefore \text{ mode} = \frac{4}{3}$	A1	1.1b
	()		(6)	2.4
	(c)	Mode > mean implies it is negative skew	BIII	2.4
			(1) (8 r	narks)
Note	es:		(01)
(a)	(a) B1 * substituting x = 2 into F(x) and equating to 1 leading to $k = \frac{1}{2}$ with no errors.			
	7.51	Minimum subst seen is $k(8-6) = 1$ or $0.5(8-6) = 1$		
(b)	MI	Realising they need to find the pdf and attempting to differentiate k	$x^3 - \frac{3}{8}x^4$	at
(i)	M1d	least 1 correct term		
(1)	wiiu	dep on 1 st M1 Attempting to find $\int_0^2 x(\text{their } f(x)) dx$ At least one correct term ft their df		
	A1	$\frac{6}{5}$ or 1.2 oe NB 1.2 with no working gains M0M0A0		
(ii)	M1d	dep on 1 st M1 for realising they need to differentiate their pdf. At leas term but ft their pdf	t one corre	ct
	M1d	Dep on 3 rd M1. correct method for solving their differential of their po	df = 0 p df	nust
	A 1	be of the form $ax^2 + bx$		
		$\therefore \text{ mode} = \frac{4}{3} \text{ only. They must eliminate } 0$		
(C)	Blft	It their mode and mean or a correct sketch.		

Question	Scheme	Marks	AOs	
5	d: 6 -6 12 6 -4 1 7 14	M1	3.1b	
	$\overline{d} = \pm 4.5$ $s_d = \sqrt{50.285} = 7.09$	M1	1.1b	
	$\mathbf{H}_0: \boldsymbol{\mu}_d = 0 \qquad \mathbf{H}_1: \boldsymbol{\mu}_d \neq 0$	B1	3.3	
	$t = \pm \frac{"4.5"\sqrt{8}}{"7.09"} \text{oe}$	M1	1.1b	
	$= \pm 1.7948 \dots$ awrt $\pm 1.79/1.8$	A1	1.1b	
	Critical value $t_7 = \pm 3.499$	B1	1.1b	
	There is insufficient evidence that the papers are of a different level of difficulty or Alexa's belief is correct	A1ft	2.2b	
		(7)		
		(7 n	narks)	
Notes:				
M1: for real	lising that the model to use is the paired t-test and finding the differences	$s(\pm)$ At lease	ast 3	
correct				
M1: correct	method for finding \overline{d} and s_d .			
B1: Using a	correct model for difference and both hypotheses correct using the nota	tion $\mu_{\rm d}$ or μ		
Condone $\mu_{I} = \mu_{II}$ and $\mu_{I} \neq \mu_{II}$				
M1: Using the correct method to find test statistics ie t = $\pm \frac{\text{"their } 4.5 \text{"}\sqrt{8}}{\text{"their } 7.09\text{"}}$				
A1: awrt1.79 or 1.8				
B1: for correct critical value $t = \pm 3.499$ with compatible sign				
A1ft: Drawing a correct inference in context using their CV and their value of t				
NB differen	ce of means test gets M0M0B1M0A0B0A0			

Question	Scheme	Marks	AOs	
6	99% confidence interval for Var uses χ^2 values of 1.735 or 23.589	B1	3.3	
	$\frac{9s^2}{1.735} = 0.2328 \text{or} \ \frac{9s^2}{23.589} = 0.01712$	M1	2.1	
	$s^{2} = \frac{0.2328 \times "1.735"}{9} \text{ or } \frac{0.01712 \times "23.589"}{9} [= 0.04487]$	dM1	1.1b	
	$\overline{\mathbf{x}} = 4.84$	B1	1.1b	
	$H_0: \mu = 5 H_1: \mu < 5$	B1	2.5	
	$CV t_9 = -1.833$	B1	1.1b	
	$t = \pm \frac{"4.84" - 5}{\sqrt{"0.0449''_{10}}}$	M1	1.1b	
	= awrt -2.39	A1	1.1b	
	Stan's belief is supported or there is evidence that the mean diameter of the bolts is less than 5mm	A1ft	2.2b	
		(9)		
		(9 n	narks)	
Notes:				
B1: For real	ising a χ^2 distribution must be used as a model and finding a correct va	lue		
M1: For rea	lising the need to set $\frac{9s^2}{"smallest \chi^2"} = 0.2328$ or $\frac{9s^2}{"largest \chi^2"} = 0.01712$			
dM1: correc	et method used to solve equation to find s^2			
B1: awrt 4.8	4			
B1: Both hy	potheses correct using the notation μ			
B1: ± 1.83	3			
M1: For us of correct formula ie $\pm \frac{\text{"their } 4.84\text{"}-5}{\sqrt{\text{"their } 0.0449\text{"/}10}}$ If "4.84" not shown it must be correct here				
A1: - 2.39				
A1ft: Draw signs)	ing a correct inference following through their CV and test statistic (mu	st have ma	tching	
NB if chi squared values not shown $s^2 = 0.045$ or 0.0449 award B0 M1M1 for awrt 0.04487 award B1 M1 A1				
Use of $2(2.5758)\frac{\sigma}{\sqrt{10}} = 0.21568$ gives $\sigma = \sqrt{0.0175}$ could get B0M0M0B1B1B1M0A0A0				
Unless continue to get $s^2 = \frac{10}{9} 0.0175 = 0.0194$				
Use of $2(1.833)\frac{s}{\sqrt{10}} = 0.21568$ gives $s = 0.1860$ could get B0M0M0B1B1B1M1A0A1				

Question	Scheme	Marks	AOs		
7 (a)	Let $T = W - 2X$ then $E(T) = 2.5 - 2 \times 1.27$	M1	3.3		
	= -0.04	A1	1.1b		
	$Var(T) = 0.7^2 + 2^2 \times 0.4^2$	M1	2.1		
	= 1.13	A1	1.1b		
	$P\left(Z > \frac{0 - " - 0.04"}{\sqrt{"1.13"}}\right) = P(Z > 0.0376)$	M1	2.1		
	= awrt 0.484/0.485	A1	1.1b		
		(6)			
(b)	$B = W_1 + W_2 + \ldots + W_n + X_1 + X_2 + \ldots + X_{2n}$	M1	3.3		
	E(B) = 5.04n	B1	1.1b		
	$Var(B) = n \times 0.7^2 + 2n \times 0.4^2$				
	= 0.81n	A1	1.1b		
	$\pm \frac{252 - "5.04n"}{\sqrt{"0.81n"}}$	M1	1.1b		
	$\frac{252 - "5.04n"}{\sqrt{"0.81n"}} = 0.8$	M1	2.1		
	$5.04n + 0.72\sqrt{n} - 252 = 0$ oe				
	$\sqrt{n} = -7.14$ or 7	M1	1.1b		
	$n = 7^2$	M1	1.1b		
	= 49	Alcso	1.1b		
		(8)			
		(14 n	narks)		
Notes:					
 (a) M1: selecting and using an appropriate model. ie ±(W- 2X) May be implied by -0.04 A1: -0.04 oe M1: for realising the need to use Var(W) + 4 Var(X). Allow use of 0.7 for Var (W) instead of 0.7² and/or 0.4 for Var(X) instead of 0.4². May be implied by 1.13 A1: 1.13 only 					
M1: For rea	M1: For realising the P(T > 0) is required and an attempt to find it. $\frac{0 - \text{"their} - 0.04\text{"}}{\sqrt{\text{"their } 1.13\text{"}}}$ may be				
implied by a A1: awrt 0.4	a correct answer. If $E(T)$ and $Var(T)$ have not been given they must be co 484/0.485	orrect here			
(b)M1: Sele B1: 5.04n o	ecting and using appropriate model. May be implied by 0.81 nly				
A1: 0.81n					
M1: For standardising using their mean and sd $\pm \frac{252 - 5.04n^{\circ}}{\sqrt{0.81n^{\circ}}}$ If mean and sd not given they must					
M1: For constructing an equation and equate their standardisation to 0.8 or awrt 0.7998. Must be of					

form $\frac{252 - an}{b\sqrt{n}} = 0.8$ or $\frac{252 - an}{bn} = 0.8$

M1: Correctly solving their 3 term quadratic equation. Condone n = 7

M1: for realising the need to square their answer or for attempting to square their quadratic equation

A1cso: 49 only

Question	Scheme	Marks	AOs	
8 (a)	$H_0: \rho_s = 0$ $H_1: \rho_s > 0$	B1	2.5	
	CV = 0.6	B1	1.1b	
	$r_s = 0.85$ does lie in the critical region	M1	2.1	
	There is evidence to suggest that there is a relationship between the position in the 100m sprint and the position in the long jump.	A1	2.2b	
		(4)		
(b)	$1 - \frac{6\sum d^2}{9(80)} = 0.85$	M1	3.1b	
	$\sum d^2 = 18$	A1	1.1b	
	$\sum d^2$ needed is '18'-15=3	M1	1.1b	
	Since $\sum d^2 = 3$ for the 3 missing places each place must contribute			
	1, therefore B must be in position 5 or 7. However, 5 has already been used so they must be position 7	A1	2.2a	
	C is 6 th and D is 8 th	A1	2.2a	
	SC B7, C6, D8 with no reasons B1 marks as final A1 on epen			
		(5)		
(c)	The $\sum d^2$ will not change but the value of n will decrease therefore	M1	2.4	
	Spearman's rank correlation will decrease	A1	2.2a	
		(2)		
(a) D1 . Deth	Notes:	(11 n	narks)	
	hypotheses correct written using the notation p			
D1: $awn 0.0$ M1. Drawin) as a correct inference using their CV and the value of r			
A1: Drawin	g a correct inference in context using their CV and the value of r_s			
(b)M1: For realising they need to equate $1 - \frac{6\sum d^2}{9(80)}$ to 0.85 to enable them to find the $\sum d^2$				
A1: 18				
M1: for \sum	$d^2 = 3$			
A1: For usir	ng the information in the question with the value for $\sum d^2$ to deduce the	at each mu	ıst	
contribute 1	to the $\sum d^2$ and explain why B must be in position 7			
A1: C 6 th I	O 8 th			
(c)M1: Complete explanation why it decreases				
A1: using the information given to deduce that it decreases				

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom