Vrite your name here Surname	Other r	names
Pearson Edexcel GCE	Centre Number	Candidate Number
Chemist	ry	
	iples of Chemistry II rganic Nitrogen Che roptic assessment)	
Unit 5: General Princ Metals and Or	rganic Nitrogen Che noptic assessment)	Paper Reference
Unit 5: General Princ Metals and Or (including syr	rganic Nitrogen Che noptic assessment) 16 – Morning	mistry

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Questions labelled with an **asterisk** (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

PEARSON

P46661A ©2016 Pearson Education Ltd. 3/6/6/3/5/5/e2

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠.
 If you change your mind, put a line through the box ⊠ and then mark your new answer with a cross ⊠.

1 Which of the following gives the oxidation states of manganese in the ions shown?

		MnO ₄ ²⁻	MnO ₃
\mathbf{X}	A	+7	+6
\mathbf{X}	B	+6	+5
X	с	+7	+5
\mathbf{X}	D	+6	+6

(Total for Question 1 = 1 mark)

2 Which of the following gives the electrodes and electrolyte that are used in an alkaline hydrogen fuel cell?

		Electrodes	Electrolyte
×	A	graphite	potassium hydroxide solution
×	В	graphite	water with a little salt
X	с	platinum	potassium hydroxide solution
×	D	platinum	water with a little salt

(Total for Question 2 = 1 mark)

3	3 Which of the following cannot be used to detect alcohol in a breathalyser test?							
	🖾 A	Fractional distillation						
	B Fuel cell							
	C Infrared spectroscopy							
	D Reduction of dichromate(VI) ions							
		(Total for Question 3 = 1 mark)						
4		tion using potassium manganate(VII) in dilute sulfuric acid can be used to nine the percentage of						
	🖾 A	aspirin in aspirin tablets.						
	B	chlorine in bleach.						
	🛛 C	copper in an alloy.						
	🖾 D	iron(II) sulfate in iron tablets.						
		(Total for Question 4 = 1 mark)						

5 Which of the following gives the electronic configurations for a chromium atom and a chromium(II) ion?

		Cr	Cr ²⁺	
\mathbf{X}	A	[Ar]3d ⁴ 4s ²	[Ar]3d⁴	
\mathbf{X}	B	[Ar]3d⁵4s¹	[Ar]3d ⁴	
\mathbf{X}	С	[Ar]3d ⁴ 4s ²	[Ar]3d ² 4s ²	
\mathbf{X}	D	[Ar]3d⁵4s¹	[Ar]3d ³ 4s ¹	

(Total for Question 5 = 1 mark)

6 Aqueous sodium hydroxide and aqueous ammonia are added to separate solutions of the same metal ion. The observations are shown in the table below.

			(То	tal for Question 8 = 1 mark)
	D	Zn(OH) ₂		
	C	Ni(OH) ₂		
	В	Mg(OH) ₂		
	A	Cu(OH) ₂		
s V	Nhich	of these hydroxides is a	amphoteric?	
			(То	tal for Question 7 = 1 mark)
	D	Zn ²⁺		
	C	Na ⁺		
	В	Fe ³⁺		
	A	Al ³⁺		
٧	Nhich	of these ions could cat	alyse this reaction?	
		2Ce ⁴	$^{+}(aq) + Tl^{+}(aq) \rightarrow 2Ce^{3+}(aq) +$	- Tl ³⁺ (aq)
ר י	Гhe re	action between cerium	(IV) ions and thallium(I) ions is v	very slow.
			(То	tal for Question 6 = 1 mark)
	D	Ni ²⁺ (aq).		
	C	Fe ³⁺ (aq).		
	B	Fe ²⁺ (aq).		
	A	Cr ³⁺ (aq).		
Т	Гhe m	etal ion is		
		NH₃(aq)	green precipitate	green precipitate dissolves to form a blue solution
		NaOH(aq)	green precipitate	green precipitate remains

P 4 6 6 1 A 0 4 3 2

9	mang	During a titration between acidified manganate(VII) ions and sulfate(IV) ions, the manganate(VII) ions are reduced to manganese(II) ions and the sulfate(IV) ions are oxidized to sulfate(VI) ions.						
	The m	ole ratio of manganate(VII) ions to sulfate(IV) ions in this reaction is						
	🖾 A	5:2						
	B	7:4						
	🖾 C	2:5						
	D 🛛	4:7						
_		(Total for Question 9 = 1 mark)						
10		tal number of compounds with the structural formula $C_6H_3CH_3(NO_2)_2$, which n a benzene ring, is						
	🛛 A	four.						
	B	five.						
	🛛 C	six.						
	D 🛛	seven.						
		(Total for Question 10 = 1 mark)						

Use this space for any rough working. Anything you write in this space will gain no credit.

P 4 6 6 1 A 0 6 3 2

DO NOT WRITE IN THIS AREA

12 Safranal is one of the substances that contributes to the aroma of saffron.

Separate samples of safranal were tested with bromine water, 2,4-dinitrophenylhydrazine and Fehling's solution.

What are the final observations when safranal is tested with each of those reagents?

		Bromine water	2,4-dinitrophenylhydrazine	Fehling's solution	
×	A	orange solution	orange solution	red precipitate	
\mathbf{X}	В	colourless solution	orange precipitate	red precipitate	
\mathbf{X}	с	orange solution	orange solution	blue solution	
X	D	colourless solution	orange precipitate	blue solution	

(Total for Question 12 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

P 4 6 6 6 1 A 0 8 3 2

14 If it is assumed that the structure of benzene has three localised double bonds (structure X), the calculated standard enthalpy change of hydrogenation is -360 kJ mol⁻¹.

structure X

The actual standard enthalpy change of hydrogenation of benzene is -208 kJ mol⁻¹.

From these data, it can be deduced that the

- A actual benzene structure is kinetically more stable than structure **X** as it requires a high activation energy to react.
- **B** actual benzene structure is thermodynamically more stable than structure **X** as it has a lower enthalpy content.
- **C** structure **X** is kinetically unstable as it undergoes addition reactions at room temperature.
- **D** structure **X** is thermodynamically more stable than the actual benzene structure as the standard enthalpy change of hydrogenation is more exothermic.

(Total for Question 14 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

DO NOT WRITE IN THIS AREA

6	The structures	of three	amino	acids	are shown	in	the table.
---	----------------	----------	-------	-------	-----------	----	------------

Structure
HSCH ₂ CH(NH ₂)COOH
H ₂ NCH ₂ COOH
CH ₃ CH(OH)CH(NH ₂)COOH

The tripeptide glycine-cysteine-threonine is

- A H₂NCH₂CONHCH(CH(OH)CH₃)CONHCH(CH₂SH)COOH
- $\blacksquare \quad \textbf{B} \quad \textbf{H}_2 \textbf{NCH}_2 \textbf{CONHCH}(\textbf{CH}_2 \textbf{SH}) \textbf{CONHCH}(\textbf{CH}(\textbf{OH}) \textbf{CH}_3) \textbf{COOH}$
- C H₂NCH(CH(OH)CH₃)CONHCH(CH₃SH)CONHCH₂COOH
- D H₂NCH(CH₂SH)CONHCH₂ CONHCH(CH(OH)CH₃)COOH

(Total for Question 16 = 1 mark)

17 The amino acid alanine, $H_2NCH(CH_3)COOH$, exists as a solid at room temperature.

The most important reason for this is that it

- A exists as a zwitterion.
- **B** forms hydrogen bonds.
- **C** is amphoteric.
- **D** has strong London forces.

(Total for Question 17 = 1 mark)

18 Complete combustion of a hydrocarbon produced 0.66 g of carbon dioxide and 0.225 g of water.

Which of the following molecular formulae is consistent with these data?

- \blacksquare **A** C₃H₆.
- **B** C₃H₈.
- $\square \mathbf{C} \quad \mathsf{C}_6\mathsf{H}_6.$
- $\square \mathbf{D} C_6 H_{10}.$

(Total for Question 18 = 1 mark)

P 4 6 6 1 A 0 1 2 3 2

DO NOT WRITE IN THIS AREA

Answer ALL the questions. Write your answers in the spaces provided.

- **20** Vanadium exists in different oxidation states which can be interconverted using suitable oxidising and reducing agents.
 - (a) Use relevant standard electrode potential values, on page 14 of the Data Booklet, to complete the table below in which two E^{\ominus} values are missing.

(1)

Half-equation	E^{\ominus} / V
$V^{2+}(aq) + 2e^- \rightleftharpoons V(s)$	
$V^{3+}(aq) + e^- \rightleftharpoons V^{2+}(aq)$	
$VO^{2+}(aq) + 2H^{+}(aq) + e^{-} \rightleftharpoons V^{3+}(aq) + H_2O(I)$	+0.34
$I_2(aq) + 2e^- \rightleftharpoons 2I^-(aq)$	+0.54
$VO_2^+(aq) + 2H^+(aq) + e^- \implies VO^{2+}(aq) + H_2O(I)$	+1.00

(b) The standard electrode potential of $V^{3+}(aq) + e^- \rightleftharpoons V^{2+}(aq)$ is measured using the apparatus below. hydrogen gas \rightarrow platinum electrode -Α solution С containing H⁺(aq) (i) Identify, by name or formula, the substances needed in the salt bridge and the right-hand half-cell to measure the standard electrode potential. (3) **A** Salt bridge containing a solution of **B** Electrode made of **C** Solution containing (ii) State the **three** standard conditions needed for this measurement. (2) 1 2 3

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

			Ś			
		Ś				
					ł	
		ś				
				5		
					í	
	4					

Predict the oxidation state of the vanadium ions left at the end of the reaction. Justify your prediction by calculating the E_{cell}^{\ominus} for any relevant reaction(s).	
Write the ionic equation for any reaction(s) occurring. State symbols are not required.	
(5)	
(Total for Question 20 = 11 marks)	

21 (a) The structures of 2-aminopropanoic acid and 3-aminopropanoic acid are shown. н н Н Н 0 H₂N Η OH Н NH₂ Н н 2-aminopropanoic acid 3-aminopropanoic acid (i) Explain how the **low** resolution proton nmr spectra of these two amino acids differ. (2) (ii) Explain whether or not 3-aminopropanoic acid is chiral. (1) (iii) Write ionic equations for the reaction of 3-aminopropanoic acid with (2) H⁺ ions OH[−] ions 17

DO NOT WRITE IN THIS AREA

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

\times	. X				
V	\sim				
	X				
V	\sim				
\sim	<u></u>	ia)	V		
4		r			
X	73		ć.		
S.#	Ň₩	1	2		
4	X.		Ь		
25	~ ~	-	ε.		
54	2				
/1	140	2			
X	X	-2	Ľ		
5.4	čel (R			
∕∥	- 2	Ľ			
	\sim	2	ť		
	х.)				
á					
м	27	ļ	Ľ		
0	<u>z)</u>	C	2		
24	-	۶	٩,		
38	-	÷	ť		
	×				
/1	-	e)	Ν,		
38					
<	100	ŵ			
/4	v×				
X	\sim	N	1		
<	~		Þ		
74	ø.	7			
ÇĮ	-	=	Ÿ		
< 🗎	\sim	4	ò		
X	<u>ک</u>	7	٢.		
12	й	5	2		
<1	Klb	d	D		
ж	ulli,		ĸ		
S	Ň				
4	in the second seco	÷	Ŋ		
ж					
< ji	-	÷	v		
4	â	d.	ĥ		
ы	C)	-5			
< U	-0	÷			
X	-	6			
X	- 22		ť		
< II	-	4	2		
X	- 6	ρ	٩.,		
X	~				
SìÌ	ĸ				
4	١Ň.	è	ĸ		
Ы	rγ				
<	10	4	ò		
2	UX.	3	ĸ		
N	-	2			
G	9	4	ð		
	-	۶	٢,		
м	2	2	2		
0	X	₹	5		
×	X				
1	1	٩,	2		
<	ĸ	3	b		
×	1	ø	٢.		
\sim	<u></u>	λ.			
4	K D				

(ii) Draw the structure of the reagent needed for Step 2 .	(1)
(iii) Explain why Sunset Yellow can exist as geometric isomers.	(1)
*(iv) Describe the essential steps of the method that you would use to prepare a pure, dry sample of the solid Sunset Yellow from an impure sample of the food colouring. You may assume that ethanol is a suitable solvent for this	
method.	(4)
	10
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	19 Turn over

(v) Suggest how you could check that a sample of Sunset Yellow is pure. (1) **DO NOT WRITE IN THIS AREA** (c) Explain how a chemist could use phenylmethanol to synthesise a sample of benzamide in three steps. CH_2OH NH_2 phenylmethanol benzamide Include the reagents for the steps in the synthesis and draw the structures of all the intermediates. DO NOT WRITE IN THIS AREA (5) (Total for Question 21 = 20 marks) 20

- 4 6 6 6 1 A 0 2 0 3 2

	ntain Zn ²⁺ ions.	
	Complete the electronic configurations of the Cu ²⁺ ions and Zn ²⁺ ions and hence explain why copper is classified as a transition metal but zinc is not.	(2)
Cu ²⁺	[Ar]	
Zn ²⁺	[Ar]	
(b)	Some photochromic glasses contain silver(I) and copper(I) chlorides.	
	Explain, with the aid of an equation, why these photochromic glasses go darker in	
	sunlight.	(2)

as $[Pt(NH_3)_2Cl_2]$. Draw the shape of the $[CuCl_4]^{2-}$ ion and state the type of bonding between the	
ligands and the metal ion.	(2)
Shape	(=)
Bonding	
d) The [CuCl ₂] ⁻ ion is formed by boiling a solution of copper(II) chloride with copper turnings and concentrated hydrochloric acid.	
(i) Write an equation for this reaction. State symbols are not required.	(1)
	(1)
(ii) State the meaning of the term disproportionation and explain whether or not this reaction to form the [CuCl ₂] ⁻ ion is a disproportionation reaction.	
	(2)

6 6 6 1 A 0 2 3

 (f) 1,2-diaminoethane is a bidentate ligand. It reacts with copper(II) ions in solution. [Cu(H₂O)₆]²⁺ + 3H₂NCH₂CH₂NH₂ ⇒ [Cu(H₂NCH₂CH₂NH₂)₃]²⁺ + (i) State what is meant by the term bidentate. 		DO NOT WRITE IN THIS AREA
(ii) Explain, in terms of entropy, why the reaction takes place.	(2)	THIS AREA
(Total for Question 2 TOTAL FOR SECTION B		DO NOT WRITE IN THIS AREA
		DO NOT WRITE IN THIS AREA

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

Analgesics

Analgesics are taken to relieve the symptoms of pain.

Paracetamol

This has been synthesised in a three-step process since the 1950s.

Ibuprofen

This was first synthesised in the 1960s from propanoic acid. That process involved six steps and produced more waste than the required drug.

It is now manufactured in a three-step process. Some data about these two analgesics are given in the table below.

Analgesic	Molecular formula	Molar mass / g mol ⁻¹
paracetamol	$C_8H_9NO_2$	151
ibuprofen	$C_{13}H_{18}O_2$	206

Turn over 🕨

(ii) Give a mechanism for the nitration of phenol by NO_2^+ to form 4-nitrophenol.	(3)
(iii) Explain why phenol is nitrated much more readily than benzene.	(2)
 (iv) State the type of reaction taking place in Stop 2	
(iv) State the type of reaction taking place in Step 2 .	(1)
(v) Suggest a reagent for Step 3 .	(1)

P 4 6 6 6 1 A 0 2 7 3 2

(ii) In an experiment, 0.500 g of a tablet containing paracetamol was hydrolysed and the solution was made up to 100 cm³.

20.0 cm³ portions of the resulting solution were titrated with 0.100 mol dm⁻³ ammonium cerium(IV) sulfate solution.

The mean titre was 12.60 cm³.

Calculate the percentage, by mass, of paracetamol in the tablet.

(d) (i) Identify the chiral carbon atom in ibuprofen with an asterisk (*).	(1)
(ii) Suggest a problem in the manufacture of a single isomer of a chiral drug and describe a way that the pharmaceutical industry might overcome this problem.	(2)
(e) Ibuprofen was originally made in a six-step process but is now made in a three-st process.	tep
	tep (1)
process. Suggest a specific environmental reason why the manufacturing process was	

(f) Ibuprofen is not very soluble in water. It can be made into an ionic, soluble salt by reacting it with lysine.

Draw the structures of **both** the cation and the anion in the soluble salt formed when ibuprofen reacts with lysine.

(2)

(Total for Question 23 = 23 marks)

TOTAL FOR SECTION C = 23 MARKS TOTAL FOR PAPER = 90 MARKS

DO NOT WRITE IN THIS AREA

			1	1		23					1																		
	0 (8)	(18) 4.0 He helium 2	20.2 Ne neon	39.9 Ar argon 18	83.8	krypton 36	131.3	Xe xenon 54	[222]	Rn radon 86	ted	11																	
	7	(17)	19.0 F fluorine 9	35.5 Cl chlorine 17	79.9	bromine 35	126.9	I iodine 53	[210]	At astatine 85	been repor	175	Lu lutetium 71	[257] Lr lawrencium 103															
	9	(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0	selenium 34	127.6	Te tellurium 52	[209]	Po polonium 84	-116 have l nticated	173	Yb ytterbium 70	[254] No nobelium 102															
	2	(15)	14.0 N nitrogen 7	31.0 P phosphorus 15	74.9	AS arsenic 33	121.8	Sb antimony 51	209.0	Bi bismuth 83	numbo ot fully	mbers 112 ully authe	mbers 112 ully authe	mbers 112 ully authe	mbers 112 ully authe	mbers 112 ully authe	mbers 112 ully authe	nbers 112 ully authe	nbers 112 ully authe	nbers 112. July auther	nbers 112. Jlly auther	nbers 112. Jlly auther	nbers 112. Jlly auther	nbers 112 July auther	nbers 112 July auther	nbers 112 July authe	169	Tm thulium 69	[256] Md mendelevium 101
	4	(14)	12.0 C carbon	28.1 Si silicon	72.6	Ge germanium 32	118.7	50 ti N	207.2	Pb tead 82		167	Er erbium 68	[253] Fm fermium 100															
	ñ	(13)	10.8 B boron 5	27.0 Al aluminium 13	69.7	gallium 31	114.8	Indium 49	204.4	TI thallium 81	ents with a 165		Ho holmium 67	[254] ES einsteinium 99															
lents				(12)	65.4	30 zinc	112.4	Cd cadmium 48	200.6	Hg mercury 80		163	Dy dysprosium 66	[251] [254] Cf Es californium 98 99															
Elem				(11)	63.5	Cu copper 29	107.9	Ag silver 47	197.0	gold 79	[272] Rg 111	159	Tb terbium 65	[245] BK berkelium 97															
The Periodic Table of Elements				58.7	N1 nickel 28	106.4	Pd palladium 46	195.1	Pt platinum 78	[268] [271] [272] Mt Ds Rg meitnerium damstadtum roentgenium 109 110 111	157	Gd gadolinium 64	[247] Cm curium 96																
c Tab	1.0 Hvdrogen	144 H		(6)	58.9	cobalt 27	102.9	Rh rhodium 45	192.2	Ir iridium 77	[268] Mt neitnerium 109	152	Eu europium 63	[243] Am americium 95															
riodi		1.0 H hydrogen 1		(8)	55.8	ron 26	101.1	Ru ruthenium 44	190.2	Os osmium 76	[277] Hs hassium 108	150	Sm samarium 62	[242] Pu plutonium 94															
ne Pe				(\mathcal{D})	54.9	Mn manganese 25	[98]	Ę	186.2	Re rhenium 75	[264] Bh bohrium 107	[147]	Pr Nd Pm praseodymium neodymium promethium 59 60 61	[237] [242] [243] Np Pu Am neptunium plutonium americum 93 94 95															
Ē			mass bol	(9)	52.0	vanadium chromium manganese 23 24 25	95.9	Mo molybdenum 42	183.8	V tungsten 74	[266] Sg seaborgium 106	144	Nd neodymium 60	238 U uranium 92															
		Key	Key	Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9	vanadium 23	92.9	Nb niobium 41	180.9	Ta tantalum 73	[262] Db dubnium 105	141	Pr praseodymium 59	[231] Pa protactinium 91													
			relati ato atomic	(4)	47.9	11 titanium 22	91.2	Zr zirconium 40	178.5	Hf hafnium 72	[261] Rf rutherfordium 104	140	Ce cerium 58	232 Th thorium 90															
			(3)			scandium 21	88.9	۲ yttrium 39	138.9	La* lanthanum 57	[227] Ac* actinium 89		Sa																
	2	(2)	9.0 Be beryllium	24.3 Mg 12	40.1	calcium 20	87.6	Sr strontium 38	137.3	Ba barium 56	[226] Ra radium 88		* Lanthanide series * Actinide series																
	-	(1)	6.9 Li lithium 3	0 - 5	39.1	K potassium 19	85.5	Rb rubidium 37	132.9	CS caesium 55	[223] Fr francium 87		* Lanth * Actini																

P 4 6 6 6 1 A 0 3 2 3 2