

A-LEVEL Mathematics

Statistics 1B – MS1B Mark scheme

6360 June 2015

Version/Stage: 1.0: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

General Notes for MS1B

- GN1 There is no allowance for misreads (MR) or miscopies (MC) unless specifically stated in a question
- **GN2** In general, a correct answer (to accuracy required) without working scores full marks but an incorrect answer (or an answer not to required accuracy) scores no marks
- **GN3** When applying AWFW, a slightly inaccurate numerical answer that is subsequently rounded to fall within the accepted range cannot be awarded full marks.
- Where percentage equivalent answers are permitted in a question, then penalise by **one accuracy mark** at the first **correct** answer but only if no indication of percentage (eg %) is shown
- **GN5** In questions involving probabilities, do **not** award **accuracy** marks for answers given in the form of a ratio or odds such as 11/30 given as 11:30 or 11:19
- **GN6** Accept decimal answers, providing that they have **at least two** leading zeros, in the form $c \times 10^{-n}$ (eg 0.00524 as 5.24×10^{-3})

Q	Solution	Marks	Total	Comments
1 (a)	Using summary data with shown method:			
	$r_{xy} = \frac{3629670}{\sqrt{76581640 \times 694250}}$	M1		Used; accept (all 3 values) ÷ 10 Can be implied by a correct answer
	= 0.49 to 0.5	A1		AWFW (0.497791)
	Using summary data without shown method or using raw data with or without shown method:			
	$r_{xy} = \frac{0.49 \text{ to } 0.5}{0.4 \text{ to } 0.6}$ $r_{xy} = \frac{0.4 \text{ to } 0.6}{0.6}$	(B2) (B1)	2	AWFW AWFW
(b)	Moderate/some positive (linear) correlation	Bdep1		Dependent on $0.4 \le r_{xy} \le 0.6$ OE; must qualify strength and state positive
	between			and state positive
	gas and electricity consumptions	B1	2	Providing $-1 < r_{xy} < +1$ OE; must be in context
Notes	 2 Use of any of the following terms (even in conjunction with moderate/some): "strong or high or big or good or low or little or small or weak or slight or medium or average or reasonable or pretty" ⇒ Bdep0 3 Accept "relationship/association/link" but not "trend" instead of "correlation" 4 As gas consumption increases then electricity consumption increases ⇒ Bdep0 B1 5 Do not accept "between x and y" or "between kWh" or "between consumptions" or "between gas and electricity" without 			
	further clarification	Total	4	

Q	Solution	Marks	Total	Comments
2 (a)	Mid-points (<i>d</i>): 65.5 66.5 67.5 68.5 69.5 70.5 71.5	M1		At least four seen or implied (only) from $\sum fd = 4095$ or mean = 68.2 to 68.3 AWFW or mean = 68.5 CAO
	Mean = 68.2 to 68.3	A1		AWFW (68.25)
	Var(n) = 2.42 or $Var(n-1) = 2.46$	B2		AWRT $ (2.42083) $ $ (\sum fd^2 = 279629) $ $ (2.46186) $
	Var(n) or $Var(n-1) = 2.4$ to 2.5	(B1)	4	AWFW
Notes	 1 Value of variance stated as 1.55² to 1.57² and not evaluate 2 Value of variance or standard deviation stated as 1.55 to 1. 3 If, and only if, M0 A0 B0, then award M1 for seen attempt 	57 ⇒ B0		$(UCB) \div 60$ or $(4095/4065/4125) \div 60$
(b)	Mean = $\frac{(68.2 \text{ to } 68.3)}{25.4}$ = $2.68 \text{ to } 2.69$	B1		AWFW (2.68701)
	Var(n) or Var(n-1) = $\frac{(2.4 \text{ to } 2.5)}{25.4^2}$ = $0.0037 \text{ to } 0.0039$	B1	2	AWFW (0.0037523 or 0.0038159) Accept (3.7 to 3.9) \times 10 ⁻³ (see GN6)
		Total	6	

Q	Solution	Marks	Total	Comments
3 (a)	Arrive E OT L Total Dep OT 0.16 0.56 0.08 0.8(0) L 0.06 0.09 0.05 0.2(0) Total 0.22 0.65 0.13 1.00	B2 (B1)		In (b) & (c), accept any equivalent fractional answer with den ≤ 100 or the equivalent percentage answer with %- sign (see GN4) All 6 correct CAO Any 3 of 6 correct CAO
			2	
(b) (i)	$P(OT_D \cap OT_A) = \underline{0.56}$	B1	(1)	CAO/OE; even 0.56/1
(ii)	$P(L_D) = \underline{0.2}$	B1	(1)	CAO/OE; even 0.2/1
(c)(i)	0.05	1	2	() 0.05)(() (1)('')
(0)(1)	$P(L_{A} L_{D}) = \frac{0.05}{0.2} =$	M1		(c's 0.05)/(c's (b)(ii)) Can be implied by a correct answer
	0.25	A1	(2)	CAO/OE; not 0.25/1
(ii)	$\begin{array}{c cccc} P(L'_A \mid OT_D) & = & & \\ \frac{0.16 + 0.56}{0.8} & \text{or} & \frac{0.8 - 0.08}{1 - 0.2} & \text{or} & \frac{0.72}{0.8} \end{array}$	B2		Can be implied by a correct answer
	0	(B1)		
	= <u>0.9</u>	B1	(3)	CAO/OE; not 0.9/1
(4)			5	
(d)	$P(E_A \cap OT_A \cap L_A \mid OT_D) =$			
	$\boxed{\frac{0.16}{0.8} \times \frac{0.56}{0.8} \times \frac{0.08}{0.8} \text{or} 0.2 \times 0.7 \times 0.1}$	M2		All three correct (equivalent) fractions or decimals multiplied
	0.8 0.8 0.8	(M1)		At least one correct (equivalent) fraction or decimal
	× (3! or 6)	m1		Dependent on M2
	= 0.084	A1	4	CAO
Notes	1 Do not penalise the correct answer quoted to more than 2 Answers given as 84/1000 or 42/500 or 21/250 or 8.4%			
SCs	1 Answers of 0.014 or 0.042 (CAO/OE) even without working ⇒ M2 mo A0			
	2 (0.16 × 0.56 × 0.08) \Rightarrow M1 m0 A0 (ignore any addition $3 \left(\frac{0.16}{1} \times \frac{0.56}{1} \times \frac{0.08}{1} \right) \Rightarrow$ M1 but $\left(\frac{0.16}{p_1} \times \frac{0.56}{p_2} \times \frac{0.08}{p_3} \right)$		nultiplier) (when all	$p_i \neq 0.8$)
	(p_1, p_2, p_3)	Total	13	
	l	1 Otal	13	

Q	Solution	Marks	Total	Comments
4 (a)	Scatter diagram: 4 points 2 or 3 points	B2 (B1)	2	Within red box on overlay (Ignore any additional points or any labelling of points)
(b) (i)	$b ext{ (gradient/slope)} = \frac{\textbf{0.4}}{\textbf{0.35}} \frac{\textbf{to 0.41}}{\textbf{0.45}}$ $b ext{ (gradient/slope)} = \frac{\textbf{0.35}}{\textbf{to 0.45}}$	B2 (B1)		AWFW (0.40517) AWFW
	$a ext{ (intercept)} = \underbrace{1.2 \text{to } 1.4}_{a \text{ (intercept)}} = \underbrace{0.45 \text{to } 2.35}_{}$	B2 (B1)		For answers as fractions, see Note 7 AWFW (1.30186) AWFW
	Attempt at $\sum x \sum x^2 \sum y$ & $\sum xy$	(M1)		209 4455 99 & 2077.1 (all 4 attempted) $\left(\sum y^2 = 937.02\right)$
	Attempt at S_{xx} & S_{xy} Attempt at substitution into correct	(m1)		484 & 196.1 (both attempted) $(S_{yy} = 82.02)$
	corresponding formula for b $b = \underline{\textbf{0.40 to 0.41}}$ $a = \underline{\textbf{1.2 to 1.4}}$	(m1) (A1 A1)	(4)	AWFW $(\overline{x} = 19 \& \overline{y} = 9)$
Notes				
	Scatter diagram line Line must be (approximately) straight; not dog leg, curve or wavy	B2	(2)	From at least $x = 8$ to $x = 30$ (allow a tolerance of 2 squares (ie 4 mm) on line length) and within red tolerance lines on overlay, even if drawn by eye
Notes	1 If, and only if, B0, then award M1 for seen use of an equ 2 If, and only if, B0, then award M0 for points or line mar		least two p	
	Parts (a) & (b)(i)	Total	6 8	
		10001	•	l

Q	Solution	Marks	Total	Comments
4	Continued			
	Parts (a) & (b)(i)	Total	8	
(b) (ii)	b: each/every/one/an additional tile takes or increase per tile is	B1		
	(on average) b hours/60b mins	BF1	(2)	F on b providing $0.35 \le b \le 0.45$ and correct units are stated
Notes	1 To score any marks, an explanation must indicate change in 2 Reference only to correlation ⇒ B0 BF0	n x affecting		y, not change in y affecting change in x
SC	1 As x/number of tiles increases then y/time increases by l and/or units are not required) \Rightarrow B1	b/60b (OE;	value of b ($0.35 \le b \le 0.45$) must be stated but context
	a: time to replace no/zero tiles, start-up time, minimum time, time for travelling, preparation, erecting ladders, obtaining materials, etc	BF1	(1)	OE; in context Reference to the value of a is not required F on a providing $a > 0$
			3	
(c)	y(15) = 7 to 8	B1	1	AWFW (7.37934) From calculation/graph/guesswork Hours not required
Note	1 Accept (420 to 480) minutes only if "minutes/mins" are	stated		
(d) (i)	$r_6 = 8.8 - a - b \times 20 = $ $r_6 = 0.6 \text{ to } -0.61$ $0.5 \text{ to } 0.7$	B2 (B1)	2	AWFW; do not ignore sign (-0.60517) AWFW; ignore sign
Note	1 If, and only if, B0, then attempted use of $\pm (8.8 - a - b)$	× 20) ⇒	M1 provid	ing $0.35 \le b \le 0.45$ and $0.45 \le a \le 2.35$
(ii)	Value will be/is always: Output Outp	B1	1	CAO; accept nothing else, but ignore zeros after decimal point (eg 0.00) Ignore any explanation
		To4a1	15	
		Total	15	

Q	Solution	Marks	Total	Comments
5				Accept percentage equivalent answers in (a)
(a)(i)	$P(X < 1.9) = P\left(Z < \frac{1.9 - 1.81}{0.08}\right)$	M1		Standardising 1.9 with 1.81 and 0.08 but allow (1.81 – 1.9)
	$= P(Z < 1.125) = \underline{0.87}$	A1	(2)	AWRT (0.86971)
(ii)	P(X > 1.85) = P(Z > 0.5) = 1 - P(Z < 0.5)	M1		Area change; can be implied by any final answer < 0.5
	$= 1 - 0.69146 = \underline{0.31}$	A1	(2)	AWRT (0.30854)
(iii)	P(1.81 < X < 1.85)			
	= (0.691 to 0.692) - 0.5 or $= 0.5 - (0.308 to 0.309)$	B1		Can be implied by a correct answer
	= <u>0.19</u>	B1	(2)	AWRT (0.19146)
(b)(i)			6	
(6)(1)	$z = \text{or} < \frac{9.25 - \mu}{\sigma} \text{or} 9.25 = \mu + z\sigma$	M1		Either expression or with z replaced by 1.17 to 1.18 (AWFW)
	$0.88 \implies z = 1.17 \text{ to } 1.18$	B1	2	AWFW (ignore sign) (1.175)
Notes	1 Allow \overline{x} /mean instead of μ and/or s/sd instead of σ 2 Result of 9.25 – $\mu = z\sigma$ stated without any prior evidence 3 Working back from the given answer 9.25 – $\mu = z \times \sigma$ 4 The M1 cannot be scored for work in (b)(ii) 5 The z-value of 1.17 to 1.18 (AWFW) must be seen in (b)	⇒ M0	B1; seen o	nly in (b)(ii) scores B0
(ii)	$P(Y > 8.75) = 0.975 \implies z = 1.96$	B1		AWRT (ignore sign)
	Thus $9.25 - \mu = +1.175 \sigma$ $8.75 - \mu = -1.96 \sigma$			(1.17 to 1.18) AWFW (ignore sign) (1.96) AWRT (ignore sign) A valid method for solution of two
	giving $0.5 = 3.135\sigma$	M1		equations that are correct except for signs of z-values (see Note 1)
	$\sigma = \underline{0.16}$	Adep1		AWRT (0.15949) Dependent on two fully correct equations
	$\mu = 9 \text{ to } 9.1$		4	including signs of z-values AWFW (9.06260)
Note	1 Accept method as shown or substitution for either μ or σ	from one e	quation into	the other, even if z-value signs are incorrect
		Total	12	
		LULAI	14	

Q	Solution	Marks	Total	Comments
6	Accept 3 dp rounding of probabilities from tables			Accept percentage equivalent answers in
(a)				(a) & (b) but see GN4
(i)		7.1		(0.5045)
	$P(X \le 15)$ = <u>0.694 to 0.695</u>	B1	(1)	AWFW (0.6946)
(ii)			(1)	
	P(X > 10) = 1 - 0.1215	M1		
	= 1 - 0.1213 $= 0.878 to 0.879$	A1		AWFW (0.8785)
				` '
	= 1 - 0.0644 or 0.935 to 0.936	(M1)	(2)	
Note	1 For calculation of individual terms or no method: award	B2 for 0.8'		(AWFW); B1 for 0.935 to 0.936 (AWFW)
(iii)				
	$ \begin{array}{c c} P(12 < X < 18) \\ & (p_1) \\ \end{array} \qquad (p_2) $			
	= 0.8761 or 0.9301	M1		
	MINUS 0 2142 0 2052	3.61		
	MINUS 0.3143 or 0.2053	M1		
	= 0.561 to 0.562	A1		AWFW (0.5618)
Notes	1 For calculation of individual terms or no method: award	R3 for 0.50	(3) 61 to 0.562	(AWFW): R2 for 0.670 to 0.671 (AWFW):
Notes	B2 for 0.615 to 0.616 (AWFW); B2 for 0.724 to 0.725 (01 to 0.502	(21112 117), 22 101 010/010 010/1 (21112 117),
(iv)	$2 (1-p_2) - (1-p_1) \Rightarrow M1 M1 A1 \text{ or } M1 M1 \text{ or } M1$			
(= .)	Mean of distribution = $40 \times 0.35 = \underline{14}$	B1		CAO; can be implied
	P(X=14)			
	$= \binom{40}{14} 0.35^{14} 0.65^{26}$			Fully correct expression
	or	M1		Can be implied
	= 0.5721 - 0.4408			Correct difference
	- 0.3721 - 0.4408			Correct difference
	= 0.131 to 0.132	A1	(2)	AWFW (0.1313)
			(3)	
(b)				
	Selection is at random	B1		Statement must include word "random"
	$P(Y < 30 \mid B(50, 0.7))$			
	= 1 - 0.9522	M2		A W/FW/ (2.2.4.7.2)
	= 0.047 to 0.048	A1		AWFW (0.0478)
	= 1 - 0.9152 or 0.084 to 0.085	(M2)		
	= 1 - 0.9749 or 0.025 to $0.026= 0.952$ to 0.953	(M2) (M1)		
	- 0.932 to 0.933	(1V11)	4	
Note	1 For direct use of $P(Y < 30 \mid B(50, 0.7))$ using calculator or (B1) B2 for 0.084 to 0.085 (AWFW); (B1) B2 for 0.025			
	(D1) D2 101 0.004 to 0.003 (AWI W), (D1) D2 101 0.023	10 0.020 (A		1) 1111 101 0.732 to 0.733
		Total	13	

Q	Solution	Marks	Total	Comments	
7 (a)	Sd of $\bar{B} = \frac{0.3/\sqrt{12 \text{ or } \sqrt{3/20 \text{ or}}}}{0.086 \text{ to } 0.087}$			CAO AWFW (0.08660)	
	or	B1		Can be implied in what follows	
	Var of $\overline{B} = \frac{0.3^2/12 \text{ or } 3/400 \text{ or } 0.0075}{0.0075}$			CAO	
	$P(\overline{B} < 10) = P\left(Z < \frac{10 - 10.15}{0.3 / \sqrt{12}}\right) = P(Z < -0.5\sqrt{12})$	M1		Standardising 10 with 10.15 and 0.3 / $\sqrt{12}$ OE ; allow (10.15 – 10)	
	= P(Z < -1.732) = 1 - P(Z < 1.732)	m1		Area change Can be implied by a correct answer or by an answer < 0.5	
	$= 1 - 0.958(37) \qquad = 0.041 \text{ to } 0.042$	A1	4	AWFW (0.04163)	
Note	1 Use of distribution of total: B1 for Sd = $0.3\sqrt{12}$ (OE); M1 for P(Z < (120 – 121.8)/(0.3 $\sqrt{12}$)) or P(Z < -6/ $\sqrt{12}$) or P(Z < -0.5 $\sqrt{12}$); m1 for area change [P(Z < -1.732) = 1 – P(Z < 1.732)]; A1 for 0.041 to 0.042 (AWFW)				
	Part (a)	Total	4		

Q	Solution	Marks	Total	Comments	
7	Continued				
	Part (a)	Total	4		
(b) (i)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1		AWFW (2.5758) AWFW (2.708)	
	CI for μ is			Ignore any notation	
	$304.6 \pm \begin{pmatrix} 2.57 \text{ to } 2.58 \\ 2.32 \text{ to } 2.33 \\ 2.70 \text{ to } 2.71 \\ 2.42 \text{ to } 2.43 \end{pmatrix} \times \frac{(5.37 \text{ or } 5.43 \text{ to } 5.44)}{\sqrt{40 \text{ or } 39}}$	M2,1 (-1 ee)		M0 if CI is not of the form: $\overline{x} \pm z \times \frac{\sigma}{\sqrt{40 \text{ or } 39}}$	
	Hence $304.6 \pm (2.2 \text{ or } 2.3)$		$\sqrt{}$	$5.37 \times \sqrt{\frac{40}{39}} = 5.4384$ CAO ; note ' or ' (not 'to')	
	or (answers must be to 1 dp)	Adep1		Dependent on award of M2	
	(302.3, 306.9) or (302.4, 306.8)		4	CAO; note 'or'	
Note	1 An incorrect expression for CI followed by a numerically c	orrect CI =	⇒ 2 solutio	ons \Rightarrow ((0 or 1) + 4)/2 \Rightarrow 2 marks	
(ii)	1				
()	Claim 1:				
	Clear correct comparison of 300 with CI eg 300 is below CI or LCL > 300	BF1		Statement must include reference to 300 F on CI providing it is above 300 Must have found an interval in (b)(i) but quoting values for CI or CLs is not required	
	Agree with or accept claim	Bdep1	(2)	OE; dependent on BF1	
Notes	1 Statement must clearly indicate that "300 is below the CI 2 Statements of the form "It/mean/value/etc is below/outsid 3 Statements of the form "300 is below/outside/not within 9 4 Statements such as "Claim is likely/reasonable/supported/"	e/not within 99% of the	the CI" =	weights" ⇒ BF0	
	Claim 2: Attempt at 304.6 - 5.37n	M1		Allow $0.86 \le n \le 3$ with a correct numerical answer (see Note 1)	
	Result < 300 so disagree with or reject claim	A1	(2)	OE Must be a clear correct comparison of stated 300 with calculated result	
Notes					
	$\Rightarrow \underline{0.19 \text{ to } 0.20} \text{ (AWFW)} \Rightarrow \text{M1} \qquad \mathbf{Result} > 0 \text{ so disagree with or reject claim} \Rightarrow \text{A1}$ $3 \text{ (300 - 304.6)/5.37} = \underline{0.85} \text{ to } \underline{0.86} \text{ (AWFW)} \Rightarrow \text{M1} \qquad \mathbf{Result} < (\mathbf{1, 2 \text{ or 3}}) \text{ so disagree with or reject claim} \Rightarrow \text{A1}$				
			4		
			12		