Version 1.0

General Certificate of Secondary Education June 2013

Science A / Chemistry

CH1HP

(Specification 4405 / 4402)

Unit 1: Chemistry 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Information to Examiners

1. General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- the typical answer or answers which are expected
- extra information to help the Examiner make his or her judgement and help to delineate what is acceptable or not worthy of credit or, in discursive answers, to give an overview of the area in which a mark or marks may be awarded.

The extra information is aligned to the appropriate answer in the left-hand part of the mark scheme and should only be applied to that item in the mark scheme.

At the beginning of a part of a question a reminder may be given, for example: where consequential marking needs to be considered in a calculation; or the answer may be on the diagram or at a different place on the script.

In general the right-hand side of the mark scheme is there to provide those extra details which confuse the main part of the mark scheme yet may be helpful in ensuring that marking is straightforward and consistent.

2. Emboldening

- **2.1** In a list of acceptable answers where more than one mark is available 'any **two** from' is used, with the number of marks emboldened. Each of the following bullet points is a potential mark.
- **2.2** A bold **and** is used to indicate that both parts of the answer are required to award the mark.
- **2.3** Alternative answers acceptable for a mark are indicated by the use of **or**. Different terms in the mark scheme are shown by a /; e.g. allow smooth / free movement.

3. Marking points

3.1 Marking of lists

This applies to questions requiring a set number of responses, but for which students have provided extra responses. The general principle to be followed in such a situation is that 'right + wrong = wrong'.

Each error / contradiction negates each correct response. So, if the number of error / contradictions equals or exceeds the number of marks available for the question, no marks can be awarded.

However, responses considered to be neutral (indicated as * in example 1) are not penalised.

Example 1: What is the pH of an acidic solution? (1 mark)

Student	Response	Marks awarded
1	green, 5	0
2	red*, 5	1
3	red*, 8	0

Example 2: Name two planets in the solar system. (2 marks)

Student	Response	Marks awarded
1	Neptune, Mars, Moon	1
2	Neptune, Sun, Mars,	0
	Moon	

3.2 Use of chemical symbols / formulae

If a student writes a chemical symbol / formula instead of a required chemical name, full credit can be given if the symbol / formula is correct and if, in the context of the question, such action is appropriate.

3.3 Marking procedure for calculations

Full marks can be given for a correct numerical answer, without any working shown.

However, if the answer is incorrect, mark(s) can be gained by correct substitution / working and this is shown in the 'extra information' column or by each stage of a longer calculation.

3.4 Interpretation of 'it'

Answers using the word 'it' should be given credit only if it is clear that the 'it' refers to the correct subject.

3.5 Errors carried forward

Any error in the answers to a structured question should be penalised once only.

Papers should be constructed in such a way that the number of times errors can be carried forward are kept to a minimum. Allowances for errors carried forward are most likely to be restricted to calculation questions and should be shown by the abbreviation e.c.f. in the marking scheme.

3.6 Phonetic spelling

The phonetic spelling of correct scientific terminology should be credited **unless** there is a possible confusion with another technical term.

3.7 Brackets

(....) are used to indicate information which is not essential for the mark to be awarded but is included to help the examiner identify the sense of the answer required.

3.8 Ignore / Insufficient / Do not allow

Ignore or insufficient is used when the information given is irrelevant to the question or not enough to gain the marking point. Any further correct amplification could gain the marking point.

Do **not** allow means that this is a wrong answer which, even if the correct answer is given, will still mean that the mark is not awarded.

Quality of Written Communication and levels marking

In Question 3(b) candidates are required to produce extended written material in English, and will be assessed on the quality of their written communication as well as the standard of the scientific response.

Candidates will be required to:

- use good English
- organise information clearly
- use specialist vocabulary where appropriate.

The following general criteria should be used to assign marks to a level:

Level 1: basic

- Knowledge of basic information
- Simple understanding
- The answer is poorly organised, with almost no specialist terms and their use demonstrating a general lack of understanding of their meaning, little or no detail
- The spelling, punctuation and grammar are very weak.

Level 2: clear

- Knowledge of accurate information
- Clear understanding
- The answer has some structure and organisation, use of specialist terms has been attempted but not always accurately, some detail is given
- There is reasonable accuracy in spelling, punctuation and grammar, although there may still be some errors.

Level 3: detailed

- Knowledge of accurate information appropriately contextualised
- Detailed understanding, supported by relevant evidence and examples
- Answer is coherent and in an organised, logical sequence, containing a wide range of appropriate or relevant specialist terms used accurately.
- The answer shows almost faultless spelling, punctuation and grammar.

question	answers	extra information	Mark
1(a)(i)	2.8.3	any sensible symbol can be used to represent an electron	1
1(a)(ii)	proton(s) and neutron(s)	both needed for the mark	1
1(a)(iii)	number of protons is equal to number of electrons	allow positive and negative charges cancel out allow same amount of protons and electrons	1
1(b)(i)	2 Al + Fe ₂ O ₃ \rightarrow 2 Fe + Al ₂ O ₃	equation must be balanced	1
1(b)(ii)	aluminium is more reactive (than iron)	it = aluminium accept converse accept aluminium displaces iron accept aluminium is higher in the reactivity series (than iron)	1
Total			5

question	answers	extra information	Mark
2(a)	 any two from: copper / ores are running out / harder to find there are no / very small amounts of high-grade copper ores left copper metal is in demand <u>copper</u> is expensive now economical to extract copper from low-grade ores 	it = copper allow new methods of extraction e.g. bioleaching and phytomining allow high-grade ores are running out for 2 marks	2
2(b)(i)	<u>large</u> amounts / 98% of rock to dispose of as waste or waste rock takes up a lot of space	accept contains toxic (metal) compounds / bioleacher	1
2(b)(ii)	(copper sulfide reacts with oxygen to) produce sulfur dioxide / SO ₂	allow (sulfur reacts with oxygen to) produce sulfur dioxide / SO ₂	1
	that causes acid rain	allow description of effects of acid rain or sulfur dioxide	1
		if no other mark awarded allow CO ₂ produced which causes global warming or CO ₂ produced by burning fuel or heating the furnace for 1 mark	
2(b)(iii)	any one from:		1
	 <u>large</u> amounts of fuels / energy used (for the furnace 	allow <u>large</u> amounts of electricity needed	
	and electrolysis)	ignore high temperature / electrolysis unqualified	
	 (the extraction has) <u>many</u> steps / stages / processes 	allow (extraction) is a long process / takes a lot of time	
	 <u>large</u> amounts of ore / material have to be mined 	allow ores contain a low percentage of copper	

Question 2 continues on the next page

Question 2 continued

question	answers	extra information	Mark
2(b)(iv)	(copper ions move towards) the negative electrode / cathode		1
	because copper ions / Cu ²⁺ are positively charged or are oppositely charged or copper ions need to gain electrons	allow because metal ions are positive or opposites attract	1
2(b)(v)	(growing) plants		1
Total			9

Question 3

question	answers	extra information	Mark
3(a)(i)	exothermic	accept combustion allow burning or oxidation or redox	1
3(a)(ii)	carbon monoxide / <i>CO</i> (is produced) because there is incomplete / partial combustion (of the fuel)	allow monoxide (is produced) ignore carbon oxide accept because there is insufficient oxygen / air (to burn the fuel)	1

Question 3(b) continues on the next page

Question 3 continued

question	Answers		extra inform	nation	Mark
3(b)	 Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information on page 5. 				
0 marks	Level 1 (1-2 marks)	Lev	vel 2 (3-4 marks)	Level 3 (5	-6 marks)
No relevant content.	There is a statement that crude oil is heated or that substances are cooled. However there is little detail and any description may be confused or inaccurate.	descri evapo either differe there	is some iption of heating / prating crude oil and fractions have ent boiling points or is an indication of a erature difference in plumn.	There is a re explanation of is or fractions separated fro using evapor condensing.	of how petro s are om crude oil
If cracking ignore.	is given as a preliminary o	r subse	quent process to frac	tional distillati	on then
However,	f cracking / catalyst is giver	n as pa	rt of the process, max	ximum is leve l	2
examples	of chemistry points made	e in the	e response could in	clude:	
• Some	/ most of the hydrocarbons	(or pet	rol) evaporate / form	vapours or ga	ses
• When conder	some of / a fraction of the h nse	iydroca	rbons (or petrol) cool	to their boiling	g point they
the top	carbons (or petrol) that hav of the fractionating columr lected near the bottom of th	n or hyd	lrocarbons with (relat		
• The pr	ocess is fractional distillatio	n			
 Heat the 350°C 	ne crude oil / mixture of hyd	rocarbo	ons or crude oil / mixt	ure is heated	to about
• Some	of the hydrocarbons remair	n as liqu	uids		
Liquids	flow to the bottom of the fi	actiona	ating column		
• Vapou	Vapours / gases rise up the fractionating column				
• Vapou	Vapours / gases cool as they rise up the fractionating column				
	 The condensed fraction (or petrol) separates from the vapours / gases and flows out through a pipe 				
• Some	of the hydrocarbons remair	n as vap	oours / gases		
• Some	vapours / gases rise out of	the top	of the fractionating c	olumn	

• There is a temperature gradient in the fractionating column or the fractionating column is cool at the top and hot at the bottom

Total	9
-------	---

question	Answers	extra information	Mark
4(a)	any one advantage from:	ignore can be made into other items	1
	 conserves resources (of crude oil / metal ores) 	allow the materials (in the pen) are non-renewable	
		allow less expensive than producing from the raw material	
	 reduces use of landfill 	ignore less waste	
	 less use of fuels/energy 		
	less carbon dioxide produced	ignore global warming unqualified	
	any one disadvantage from:		1
	 made of different polymers / alloys / materials 		
	 difficulty / cost of separating the different materials 	allow not all the materials can be recycled	
4(b)	hard / strong / durable		1
	resistant to corrosion or	allow do not rust	1
	unreactive	do not allow corrosive	
4(c)(i)		ignore pressure / hot / heat	
	vapours (of decane)	allow high temperature (≥150 °C)	1
	passed over a catalyst or porous pot or aluminium oxide	allow catalyst even if incorrectly named	1
	or		
	mixed with steam (1)		
	at a (very) high temperature (1)	if temperature quoted, must be ≥500 °C	

Question 4 continues on the next page

Question 4 continued

question	Answers	extra information	Mark
4(c)(ii)	<u>many</u> monomers or <u>many</u> ethene molecules		1
	join / bond	allow addition polymerisation for	1
	OR	second mark	
	monomers / ethene molecules (1)		
	form chains or very large molecules (1)	if no other mark awarded allow double bond breaks / opens up or double bond forms a single bond for 1 mark	
4(d)	$ \begin{array}{c c} H & H \\ - & - \\ C & C \\ - & C \\ - & - \\ H & C_6H_5 \\ \end{array} n $	allow bonds that do not extend through brackets 7 single bonds are used and are in the correct places with no additional atoms (1) the brackets and the n are in the correct place (1)	2
Total			10

question	Answers	extra information	Mark
5(a)(i)	H ₂ O	must be formula	1
	CaO	must be formula	1
5(a)(ii)		it = carbon (dioxide)	
	carbon dioxide from the air / (Earth's early) atmosphere	accept carbon dioxide from millions of years ago	1
	<u>formed</u> (sedimentary) rocks or fossil fuels	ignore trapped / stored	1
5(b)(i)		it = carbon (dioxide)	
	decreases rapidly at first		1
	then slowly or levels off	allow both marks if the description is correct using either 'rapidly' or 'slowly'	1
		allow correct use of figures for either marking point	
		if no other mark awarded, allow CO_2 decreased for 1 mark	
5(b)(ii)	any two from:	it = carbon (dioxide)	2
	 used by plants 	accept photosynthesis	
	dissolved in oceans		
	 'locked up' in fossil fuels or formed fossil fuels 		
	 'locked up' in rocks or formed rocks 		

Question 5 continues on the next page

Question 5 continued

question	Answers	extra information	Mark
5(c)		it = percentage of carbon (dioxide)	
	(yes)	ignore yes or no	
	because the percentage of carbon dioxide is increasing		1
	which causes global warming (to increase)	allow (carbon dioxide) causes greenhouse effect/climate change	1
	or		
	(no)		
	because the percentage of carbon dioxide is low (1)		
	compared to millions of years ago (1)	allow global warming can be caused by other factors (e.g. Sun / water vapour / methane)	
Total			10

question	Answers	extra information	Mark
6(a)	Earth consists of crust, mantle and core		1
	relative positions (of crust, mantle and core) correctly given		1
	crust is thinner than the mantle and core		1
		accept correct information from a labelled diagram	
6(b)	continents were joined together	accept there was a supercontinent / Pangaea	1
	the continents then drifted apart or moved apart	ignore attempts at explanations for movement	1
Total			5

question	Answers	extra information	Mark
7(a)	ethanol is made up of only one type of molecule or ethanol is a compound	allow ethanol is pure	1
	diesel / petrol / rapeseed oil are mixtures	accept composition of diesel / petrol / rapeseed oil varies / changes	1
		allow different hydrocarbons have different melting points	
		ignore diesel, petrol and rapeseed oil are impure	
7(b)(i)	sugar is mixed with / dissolved in water	accept sugar cane for sugar	1
	yeast (is added)	allow enzymes are added	1
		if no other mark awarded, allow correct word or chemical equation for 1 mark	
7(b)(ii)		accept carbon for carbon dioxide	
	(growing sugar cane / rapeseed) plants absorbs carbon dioxide	accept carbon dioxide is used for photosynthesis	1
	which is released (when the biofuel burns)	do not accept <u>no</u> carbon dioxide is released (when biofuels burn)	1
7(c)	nitrogen / N_2 and oxygen / O_2 (in the air)	do not accept fuels contain nitrogen	1
	react in the hot engine / at high temperature		1

Question 7 continues on the next page

Question 7 continued

question	Answers	extra information	Mark
7(d)	any three from:	ignore references to melting point	3
	 ethanol needs a higher temperature to burn than petrol or ethanol has a higher flashpoint than petrol ethanol releases less energy (per litre) than petrol sugar is renewable or crude oil is non-renewable / will run out sugar cane growth is unreliable / slow or crude oil is a reliable supply 	allow ethanol is not readily available or petrol is readily available	
	 ethanol is made by a batch / slow process or petrol is made by a continuous / fast process ethanol is carbon neutral or petrol contains 'locked up' carbon dioxide sugar / sugar cane should be used for food not for fuels 	accept idea of food shortages	
	a justified conclusion that adds value	accept one additional point from the list above as long as one comparison of replacing petrol with ethanol is made	1
Total			12

UMS Conversion Calculator: <u>www.aqa.org.uk/umsconversion</u>