4723 Core Mathematics 3

Obtain 0.75

1	(i)	Show corr	rect process for composition of functions	M1		numerical or algebraic; the right way round
		Obtain (–3 and hence) –23		A1	2	Tound
	(ii)		Either: State or imply $x^3 + 4 = 12$			
	(11)		Attempt solution of equation involving x^3 Obtain 2	B1 M1 A1		as far as $x = \dots$ and no other value
		<u>Or</u> :	Attempt expression for f^{-1} Obtain $\sqrt[3]{x-4}$ or $\sqrt[3]{y-4}$ Obtain 2	M1 A1 A1	(3)	involving x or y ; involving cube root and no other value
_	(*)	01		B1		0.064227
2 (i)		Carry ou	Obtain correct first iterate 2.864 Carry out correct iteration process Obtain 2.877		3	or greater accuracy 2.864327; condone 2 dp here and in working to find at least 3 iterates in all after at least 4 steps; answer
			$[3 \rightarrow 2.864327 \rightarrow 2.878042 \rightarrow 2.878040000000000000000000000000000000000$			required to exactly 3 dp
	(ii)	State or	State or imply $x = \sqrt[3]{31 - \frac{5}{2}x}$			
		Attempt	rearrangement of equation in x	M1		involving cubing and grouping non-zero terms on LHS
		Obtain e	equation $2x^3 + 5x - 62 = 0$	A1	3	or equiv with integers
3	(a)	State con	rrect equation involving $\cos \frac{1}{2}\alpha$	B1		such as $\cos \frac{1}{2}\alpha = \frac{1}{4}$ or $\frac{1}{\cos \frac{1}{2}\alpha} = 4$
		Attempt Obtain	to find value of α	M1 A1		or using correct order for the steps or greater accuracy; and no other values between 0 and 180
	(b)	State or	imply $\cot \beta = \frac{1}{\tan \beta}$	B 1		
			ge to the form $\tan \beta = k$	M1		or equiv involving $\sin \beta$ only or $\cos \beta$ only; allow missing \pm
		Obtain Obtain		A1 A1	4	or greater accuracy; and no others between 0 and 180
4	(i)	Obtain d	derivative of form $kh^5(h^6 + 16)^n$	M1		any constant k ; any $n < \frac{1}{2}$; allow if -4 term retained
			correct $3h^5(h^6 + 16)^{-\frac{1}{2}}$	A1	2	or (unsimplified) equiv; no –4 now
(ii)	Attempt	te to obtain 10.7 multn or divn using 8 and answer from (i) M 8 divided by answer from (i)	M1		or greater accuracy: allow 0.75 ± 0.01:

 $A1\sqrt{3}$ or greater accuracy; allow 0.75 ± 0.01 ;

following their answer from (i)

5 (a)	Obtain integral of form $k(3x+7)^{10}$	
	Obtain (unsimplified) $\frac{1}{10} \times \frac{1}{3} (3x + 7)^{10}$	
	Obtain (simplified) $\frac{1}{30}(3x+7)^{10} + c$	

(b) State
$$\int \pi (\frac{1}{2\sqrt{x}})^2 dx$$

Integrate to obtain $k \ln x$

B1 or equiv involving
$$x$$
; condone no d x
M1 any constant k involving π or not;
or equiv such as $k \ln 4x$ or $k \ln 2x$

Obtain
$$\frac{1}{4}\pi \ln x$$
 or $\frac{1}{4}\ln x$ or $\frac{1}{4}\pi \ln 4x$ or $\frac{1}{4}\ln 4x$ **A1**
Show use of the $\log a - \log b$ property
Obtain $\frac{1}{4}\pi \ln 2$

State reflection in *x*-axis Or: Refer to translation and reflection State reflection in y-axis State translation by 1 in positive *x*-direction

B1 3 using correct terminology **B1** in either order; allow clear equivs **B1**

(ii) Show sketch with attempt at reflection of 'negative' part in x-axis

B1 (3) with order reflection then translation clearly intended

Show (more or less) correct sketch

M1 and curve for 0<x<1 unchanged with correct curvature A1 2

(iii) Attempt correct process for finding at least one value **M1** as far as x = ...; accept decimal equivs (degrees or radians) or expressions involving $\sin(\frac{1}{3}\pi)$

Obtain
$$1 - \frac{1}{2}\sqrt{3}$$

Obtain $1 + \frac{1}{2}\sqrt{3}$

A1 3 or exact equiv; give A1A0 if extra incorrect solution(s) provided

7 (i) Attempt use of product rule for xe^{2x} Obtain $e^{2x} + 2xe^{2x}$

empt use of product rule for
$$xe^{2x}$$
 M1 obtaining ... + ...
tain $e^{2x} + 2xe^{2x}$ A1 or equiv; maybe within QR attempt

Attempt use of quotient rule Obtain unsimplified $\frac{(x+k)(e^{2x} + 2xe^{2x}) - xe^{2x}}{(x+k)^2}$

$$\frac{\mathbf{M1}}{\mathbf{M1}}$$
 with or without product rule $\frac{e^{2x}}{\mathbf{A1}}$

Obtain
$$\frac{e^{2x}(2x^2 + 2kx + k)}{(x+k)^2}$$

Attempt use of discriminant (ii) Obtain $4k^2 - 8k = 0$ or equiv and hence k = 2Attempt solution of $2x^2 + 2kx + k = 0$

Obtain x = -1Obtain $-e^{-2}$

A1 A1 5 or exact equiv

8 (i)	State or imply $h = 1$ Attempt calculation involving attempts at y values		addition with each of coefficients 1, 2, 4 occurring at least once; involving at least 5 <i>y</i> values
	Obtain $a(1 + 4 \times 2 + 2 \times 4 + 4 \times 8 + 2 \times 16 + 4 \times 32 + 64)$ A1 Obtain 91	A1 4	any constant a
(ii)	State $e^{x \ln 2}$ or $k = \ln 2$ Integrate e^{kx} to obtain $\frac{1}{k}e^{kx}$	B1 M1	allow decimal equiv such as $e^{0.69x}$ any constant k or in terms of general k
	Obtain $\frac{1}{\ln 2} (e^{6\ln 2} - e^0)$	A1	or exact equiv
	Simplify to obtain $\frac{63}{\ln 2}$	A1 4	allow if simplification in part (iii)
(iii)	Equate answers to (i) and (ii)	M1	provided ln 2 involved other than in power of e
	Obtain $\frac{63}{91}$ and hence $\frac{9}{13}$	A1 2	AG; necessary correct detail required
9 (i)	State at least one of $\cos \theta \cos 60 - \sin \theta \sin 60$ and $\cos \theta \cos 30 - \sin \theta \sin 30$ Attempt complete multiplication of identities of form	B1	
	$\pm \cos \cos \pm \sin \sin$	M1	with values $\frac{1}{2}\sqrt{3}$, $\frac{1}{2}$ involved
	Use $\cos^2 \theta + \sin^2 \theta = 1$ and $2\sin \theta \cos \theta = \sin 2\theta$	M1	
	Obtain $\sqrt{3} - 2\sin 2\theta$	A1 4	AG; necessary detail required
(ii)	Attempt use of 22.5 in right-hand side Obtain $\sqrt{3} - \sqrt{2}$	M1 A1 2	or exact equiv
(iii)	Obtain 10.7 Attempt correct process to find two angles Obtain 79.3	B1 M1 A1 3	or greater accuracy; allow ± 0.1 from values of 2θ between 0 and 180 or greater accuracy and no others between 0 and 90; allow ± 0.1
(iv)	Indicate or imply that critical values of $\sin 2\theta$ are -1 and 1	M1	
	Obtain both of $k > \sqrt{3} + 2$, $k < \sqrt{3} - 2$ Obtain complete correct solution	A1 A1 3	condoning decimal equivs, ≤≥ signs now with exact values and unambiguously stated