9MA0/02: Pure Mathematics Paper 2 Mark scheme

Question Scheme		Marks	AOs
1	$\frac{1}{2} \mathrm{r}^{2}(4.8)$	M1	1.1a
	$\frac{1}{2} \mathrm{r}^{2}(4.8)=135 \Rightarrow \mathrm{r}^{2}=\frac{225}{4} \Rightarrow \mathrm{r}=7.5$ o.e.	A1	1.1b
	length of minor arc $=7.5(2 \pi-4.8)$	dM1	3.1a
	$=15 \pi-36 \quad\{\mathrm{a}=15, \mathrm{~b}=-36\}$	A1	1.1b
		(4)	
$\begin{gathered} 1 \\ \text { Alt } \end{gathered}$	$\frac{1}{2} \mathrm{r}^{2}(4.8)$	M1	1.1a
	$\frac{1}{2} \mathrm{r}^{2}(4.8)=135 \Rightarrow \mathrm{r}^{2}=\frac{225}{4} \Rightarrow \mathrm{r}=7.5$ o.e.	A1	1.1b
	length of major arc $=7.5(4.8)\{=36\}$		
	length of minor arc $=2 \pi(7.5)-36$	dM1	3.1a
	$=15 \pi-36 \quad\{\mathrm{a}=15, \mathrm{~b}=-36\}$	A1	1.1b
		(4)	
(4 marks)			
Question 1 Notes:			
M1:	Applies formula for the area of a sector with $\theta=4.8$; i.e. $\frac{1}{2} \mathrm{r}^{2} \theta$ with $\theta=4.8$ Note: Allow M1 for considering ratios. E.g. $\frac{135}{\pi \mathrm{r}^{2}}=\frac{4.8}{2 \pi}$		
A1:	Uses a correct equation $\left(\right.$ e.g. $\left.\frac{1}{2} \mathrm{r}^{2}(4.8)=135\right)$ to obtain a radius of 7.5		
dM1:	Depends on the previous M mark. A complete process for finding the length of the minor arc AB , by either - (their r$) \times(2 \pi-4.8)$ - $2 \pi($ their r$)-($ their r$)(4.8)$		
A1:	Correct exact answer in its simplest form, e.g. $15 \pi-36$ or $-36+15 \pi$		

Questio	Scheme	Marks	AOs
3 (a)	$\{\mathrm{t}=0, \theta=75 \Rightarrow 75=25+\mathrm{A} \Rightarrow \mathrm{A}=50\} \Rightarrow \theta=25+50 \mathrm{e}^{-0.03 \mathrm{t}}$	B1	3.3
		(1)	
(b)	$\{\theta=60 \Rightarrow\} \Rightarrow 60=25+" 50 " \mathrm{e}^{-0.03 t} \Rightarrow \mathrm{e}^{-0.03 t}=\frac{60-25}{" 50}$	M1	3.4
	$\mathrm{t}=\frac{\ln (0.7)}{-0.03}=11.8891648=11.9$ minutes $(1 \mathrm{dp})$	A1	1.1b
		(2)	
(c)	A valid evaluation of the model, which relates to the large values of t. E.g. - As $20.3<25$ then the model is not true for large values of t - $\mathrm{e}^{-0.03 t}=\frac{20.3-25}{" 50 "}=-0.094$ does not have any solutions and so the model predicts that tea in the room will never be $20.3^{\circ} \mathrm{C}$. So the model does not work for large values of t - $\mathrm{t}=120 \Rightarrow \theta=25+50 \mathrm{e}^{-0.03(120)}=26.36 \ldots$ which is not approximately equal to 20.3 , so the model is not true for large values of t	B1	3.5a
		(1)	
(4 marks)			
Question 3 Notes:			
(a) B1: (b) M1: A1 (c) B1	lies $\mathrm{t}=0, \theta=75$ to give the complete model $\theta=25+50 \mathrm{e}^{-0.03 \mathrm{t}}$ lies $\theta=60$ and their value of A to the model and rearranges to make $\mathrm{e}^{-0.03 t}$ e: Later working can imply this mark. ains 11.9 (minutes) with no errors in manipulation seen. scheme	subject.	

4(a)	V/ \quadCorrect graph in quadrant 1 and quadrant 2 with V on the x-axis	B1	1.1b
	 States $(0,5)$ and $\left(\frac{5}{2}, 0\right)$ or $\frac{5}{2}$ marked in the correct position on the x -axis and 5 marked in the correct position on the y-axis	B1	1.1b
		(2)	
(b)	$2 \mathrm{x}-5 \mid>7$		
	$2 \mathrm{x}-5=7 \Rightarrow \mathrm{x}=\ldots$ and $-(2 \mathrm{x}-5)=7 \Rightarrow \mathrm{x}=\ldots$	M1	1.1b
	$\{$ critical values are $\mathrm{x}=6,-1 \Rightarrow$ \} $\mathrm{x}<-1$ or $\mathrm{x}>6$	A1	1.1b
		(2)	
(c)	$\|2 x-5\|>x-\frac{5}{2}$		
	E.g. - Solves $2 x-5=x-\frac{5}{2}$ to give $x=\frac{5}{2}$ and solves $-(2 x-5)=x-\frac{5}{2}$ to also give $x=\frac{5}{2}$ - Sketches graphs of $y=\|2 x-5\|$ and $y=x-\frac{5}{2}$. Indicates that these graphs meet at the point $\left(\frac{5}{2}, 0\right)$	M1	3.1a
	Hence using set notation, e.g. - $\left\{x: x<\frac{5}{2}\right\} \cup\left\{x: x>\frac{5}{2}\right\}$ - $\left\{x \in \square, x \neq \frac{5}{2}\right\}$ - $\square-\left\{\frac{5}{2}\right\}$	A1	2.5
		(2)	
(6 marks)			

Question 4 Notes:

(a)

B1: See scheme
B1: See scheme
(b)

M1: See scheme
A1: \quad Correct answer, e.g.

- $x<-1$ or $x>6$
- $x<-1 \cup x>6$
- $\{x: x<-1\} \cup\{x: x>6\}$
(c)

M1:
A complete process of finding that $\mathrm{y}=|2 \mathrm{x}-5|$ and $\mathrm{y}=\mathrm{x}-\frac{5}{2}$ meet at only one point.
This can be achieved either algebraically or graphically.
A1:
See scheme.
Note: Final answer must be expressed using set notation.
$3 \mathrm{x}-2 \mathrm{y}=\mathrm{k}$ intersects $\mathrm{y}=2 \mathrm{x}^{2}-5$ at two distinct points

Question 5 Notes:

M1: \quad Complete strategy of eliminating x or y and manipulating the resulting equation to form a quadratic equation $=0$ or a quadratic expression $\{=0\}$

A1: \quad Correct algebra leading to either

- $-4 x^{2}+3 \mathrm{x}+10-\mathrm{k}=0$ or $4 \mathrm{x}^{2}-3 \mathrm{x}-10+\mathrm{k}=0$
or a one-sided quadratic of either $-4 \mathrm{x}^{2}+3 \mathrm{x}+10-\mathrm{k}$ or $4 \mathrm{x}^{2}-3 \mathrm{x}-10+\mathrm{k}$
- $8 y^{2}+(8 k-9) y+2 k^{2}-45=0$
or a one-sided quadratic of e.g. $8 \mathrm{y}^{2}+(8 k-9) y+2 \mathrm{k}^{2}-45$
dM1:
Depends on the previous M mark.
Interprets $3 x-2 y=k$ intersecting $y=2 x^{2}-5$ at two distinct points by applying " $\mathrm{b}^{2}-4 \mathrm{ac} ">0$ to their quadratic equation or one-sided quadratic.
B1: See scheme
A1: \quad Correct answer, e.g.
- $\mathrm{k}<\frac{169}{16}$
- $\left\{\mathrm{k}: \mathrm{k}<\frac{169}{16}\right\}$

Alt 2
M1: \quad Complete strategy of using differentiation to find the values of x and y where $3 \mathrm{x}-2 \mathrm{y}=\mathrm{k}$ is a tangent to $y=2 x^{2}-5$

A1: \quad Correct algebra leading to $x=\frac{3}{8}, y=-\frac{151}{32}$
dM1: Depends on the previous M mark.
Full method of substituting their $\mathrm{x}=\frac{3}{8}, \mathrm{y}=-\frac{151}{32}$ into 1 and attempting to find the value for k .
B1: See scheme
A1:
Deduces correct answer, e.g.

- $\mathrm{k}<\frac{169}{16}$
- $\left\{\mathrm{k}: \mathrm{k}<\frac{169}{16}\right\}$

6(a)	$\mathrm{f}(\mathrm{x})=(8-\mathrm{x}) \ln \mathrm{x}, \mathrm{x}>0$		
	Crosses x -axis $\Rightarrow \mathrm{f}(\mathrm{x})=0 \Rightarrow(8-\mathrm{x}) \ln \mathrm{x}=0$		
	x coordinates are 1 and 8	B1	1.1b
		(1)	
(b)	Complete strategy of setting $\mathrm{f}^{\prime}(\mathrm{x})=0$ and rearranges to make $\mathrm{x}=\ldots$	M1	3.1a
	$\left\{\begin{array}{ll} \mathrm{u}=(8-\mathrm{x}) & \mathrm{v}=\ln \mathrm{x} \\ \frac{\mathrm{du}}{\mathrm{dx}}=-1 & \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{1}{\mathrm{x}} \end{array}\right\}$		
	$f^{\prime}(x)=-\ln x+\frac{8-x}{x}$	M1	1.1b
	$f(\mathrm{x})=-\ln x$	A1	1.1b
	$\begin{gathered} -\ln x+\frac{8-x}{x}=0 \Rightarrow-\ln x+\frac{8}{x}-1=0 \\ \Rightarrow \frac{8}{x}=1+\ln x \Rightarrow x=\frac{8}{1+\ln x} * \end{gathered}$	A1*	2.1
		(4)	
(c)	Evaluates both $\mathrm{f}^{\prime}(3.5)$ and $\mathrm{f}^{\prime}(3.6)$	M1	1.1b
	$f^{\prime}(3.5)=0.032951317 \ldots \text { and } f^{\prime}(3.6)=-0.058711623 \ldots$ Sign change and as $f^{\prime}(x)$ is continuous, the x coordinate of Q lies between $\mathrm{x}=3.5$ and $\mathrm{x}=3.6$	A1	2.4
		(2)	
(d)(i)	$\left\{\mathrm{x}_{5}=\right\} 3.5340$	B1	1.1b
(d)(ii)	$\left\{\mathrm{x}_{\mathrm{Q}}=\right\} 3.54(2 \mathrm{dp})$	B1	2.2a
		(2)	

Question 6 Notes:

(a)

B1:
Either

- 1 and 8
- on Figure 2, marks 1 next to A and 8 next to B
(b)

M1: Recognises that Q is a stationary point (and not a root) and applies a complete strategy of setting $\mathrm{f}^{\prime}(\mathrm{x})=0$ and rearranges to make $\mathrm{x}=\ldots$
M1: Applies vu' $+\mathrm{uv}^{\prime}$, where $\mathrm{u}=8-\mathrm{x}, \mathrm{v}=\ln \mathrm{x}$
Note: This mark can be recovered for work in part (c)
A1:
$(8-x) \ln x \rightarrow-\ln x+\frac{8-x}{x}$, or equivalent
Note: This mark can be recovered for work in part (c)
A1*: Correct proof with no errors seen in working.
(c)

M1: \quad Evaluates both $\mathrm{f}^{\prime}(3.5)$ and $\mathrm{f}^{\prime}(3.6)$
A1: $\quad f^{\prime}(3.5)=$ awrt 0.03 and $f^{\prime}(3.6)=$ awrt -0.06 or $f^{\prime}(3.6)=-0.05$ (truncated)
and a correct conclusion
(d)(i)

B1:
See scheme
(d)(ii)

B1:
Deduces (e.g. by the use of further iterations) that the x coordinate of Q is 3.54 accurate to 2 dp
Note: $3.5 \rightarrow 3.55119 \rightarrow 3.52845 \rightarrow 3.53848 \rightarrow 3.53404 \rightarrow 3.53600 \rightarrow 3.53514(\rightarrow 3.535518 \ldots$...)

Question	Scheme	Marks	AOs
7(a)	$\frac{\mathrm{dp}}{\mathrm{dt}} \propto \mathrm{p} \Rightarrow \frac{\mathrm{dp}}{\mathrm{dt}}=\mathrm{kp}$	B1	3.3
	$\int \frac{1}{\mathrm{p}} \mathrm{dp}=\int \mathrm{kdt}$	M1	1.1b
	$\ln \mathrm{p}=\mathrm{kt}\{+\mathrm{c}\}$	A1	1.1b
	$\ln \mathrm{p}=\mathrm{kt}+\mathrm{c} \Rightarrow \mathrm{p}=\mathrm{e}^{\mathrm{ktc}}=\mathrm{e}^{\mathrm{k}} \mathrm{c}^{\mathrm{c}} \Rightarrow \mathrm{p}=\mathrm{e}^{\mathrm{kt}} *$	A1 *	2.1
		(4)	
(b)	$\mathrm{p}=\mathrm{ae}^{\mathrm{kt}} \Rightarrow \ln \mathrm{p}=\ln \mathrm{a}+\mathrm{kt}$ and evidence of understanding that either - \quad gradient $=k$ or " $\mathrm{M}^{\prime}=\mathrm{k}$ - vertical intercept $=\ln \mathrm{a}$ or $" \mathrm{C} "=\ln \mathrm{a}$	M1	2.1
	gradient $=\mathrm{k}=0.14$	A1	1.1b
	vertical intercept $=\ln \mathrm{a}=3.95 \Rightarrow \mathrm{a}=\mathrm{e}^{3.95}=51.935=52(2 \mathrm{sf})$	A1	1.1b
		(3)	
(c)	e.g. - $\mathrm{p}=\mathrm{ae}^{\mathrm{kt}} \Rightarrow \mathrm{p}=\mathrm{a}\left(\mathrm{e}^{\mathrm{k}}\right)^{\mathrm{t}}=\mathrm{ab}^{\mathrm{t}}$, - $\quad \mathrm{p}=52 \mathrm{e}^{0.14 \mathrm{t}} \Rightarrow \mathrm{p}=52\left(\mathrm{e}^{0.14}\right)^{\mathrm{t}}$	B1	2.2a
	$\mathrm{b}=1.15$ which can be implied by $\mathrm{p}=52(1.15)^{\mathrm{t}}$	B1	1.1b
		(2)	
(d)(i)	Initial area (i.e. " $52 \mathrm{~mm}^{2}$) of bacterial culture that was first placed onto the circular dish.	B1	3.4
(d)(ii)	E.g. - Rate of increase per hour of the area of bacterial culture - The area of bacterial culture increases by " 15% " each hour	B1	3.4
		(2)	
(e)	The model predicts that the area of the bacteria culture will increase indefinitely, but the size of the circular dish will be a constraint on this area.	B1	3.5b
		(1)	
(12 marks)			

Question 7 Notes:

(a)

B1: Translates the scientist's statement regarding proportionality into a differential equation, which involves a constant of proportionality. e.g. $\frac{\mathrm{dp}}{\mathrm{dt}} \propto \mathrm{p} \Rightarrow \frac{\mathrm{dp}}{\mathrm{dt}}=\mathrm{kp}$
M1: Correct method of separating the variables p and t in their differential equation
A1: $\quad \ln \mathrm{p}=\mathrm{kt}$, with or without a constant of integration
A1*: Correct proof with no errors seen in working.
(b)

M1: \quad See scheme
A1: \quad Correctly finds $\mathrm{k}=0.14$
A1: \quad Correctly finds $\mathrm{a}=52$
(c)

B1: Uses algebra to correctly deduce either

- $p=a b^{t}$ from $p=a e^{k t}$
- $p=" 52 "\left(e^{0.14 "}\right)^{t}$ from $p=" 52 " e^{0.14 " t}$

B1: See scheme
(d)(i)

B1: See scheme
(d)(ii)

B1: See scheme
(e)

B1: Gives a correct long-term limitation of the model for p. (See scheme).

8(a)	$\frac{\mathrm{dV}}{\mathrm{dt}}=160 \pi, \mathrm{~V}=\frac{1}{3} \pi \mathrm{~h}^{2}(75-\mathrm{h})=25 \pi \mathrm{~h}^{2}-\frac{1}{3} \pi \mathrm{~h}^{3}$		
	$\frac{\mathrm{dV}}{\mathrm{h}}=50 \pi \mathrm{~h}-\pi \mathrm{h}^{2}$	M1	1.1b
	dh -	A1	1.1b
	$\left\{\frac{\mathrm{dV}}{\mathrm{dh}} \times \frac{\mathrm{dh}}{\mathrm{dt}}=\frac{\mathrm{dV}}{\mathrm{dt}} \Rightarrow\right\}\left(50 \pi \mathrm{~h}-\pi \mathrm{h}^{2}\right) \frac{\mathrm{dh}}{\mathrm{dt}}=160 \pi$	M1	3.1a
	When $\mathrm{h}=10,\left\{\frac{\mathrm{dh}}{\mathrm{dt}}=\frac{\mathrm{dV}}{\mathrm{dt}} \div \frac{\mathrm{dV}}{\mathrm{dh}} \Rightarrow\right\} \frac{160 \pi}{50 \pi(10)-\pi(10)^{2}}\left\{=\frac{160 \pi}{400 \pi}\right\}$	dM1	3.4
	$\frac{\mathrm{dh}}{\mathrm{dt}}=0.4\left(\mathrm{cms}^{-1}\right)$	A1	1.1b
		(5)	
(b)	$\frac{\mathrm{dh}}{\mathrm{dt}}=\frac{300 \pi}{50 \pi(20)-\pi(20)^{2}}$	M1	3.4
	$\frac{\mathrm{dh}}{\mathrm{dt}}=0.5\left(\mathrm{cms}^{-1}\right)$	A1	1.1b
		(2)	

Question 8 Notes:

(a)

M1: Differentiates V with respect to h to give $\pm \alpha \mathrm{h} \pm \beta \mathrm{h}^{2}, \alpha \neq 0, \beta \neq 0$
A1: $\quad 50 \pi \mathrm{~h}-\pi \mathrm{h}^{2}$
M1: Attempts to solve the problem by applying a complete method of $\left(\right.$ their $\left.\frac{\mathrm{dV}}{\mathrm{dh}}\right) \times \frac{\mathrm{dh}}{\mathrm{dt}}=160 \pi$
M1: Depends on the previous M mark.
Substitutes $\mathrm{h}=10$ into their model for $\frac{\mathrm{dh}}{\mathrm{dt}}$ which is in the form $\frac{160 \pi}{\left(\text { their } \frac{\mathrm{dV}}{\mathrm{dh}}\right)}$
A1: \quad Obtains the correct answer 0.4
(b)

M1: Realises that rate for of $160 \pi \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ for $0, \mathrm{~h}, 12$ has no effect when the rate is increased to $300 \pi \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ for $12<\mathrm{h}, 24$ and so substitutes $\mathrm{h}=20$ into their model for $\frac{\mathrm{dh}}{\mathrm{dt}}$ which is in the form $\frac{300 \pi}{\left(\text { their } \frac{d V}{d h}\right)}$

A1: Obtains the correct answer 0.5

9(a)	E.g. midpoint $\mathrm{PQ}=\left(\frac{-9+15}{2}, \frac{8-10}{2}\right)$	M1	1.1b
	$=(3,-1)$, which is the centre point A , so PQ is the diameter of the circle.	A1	2.1
		(2)	
(a) Alt 1	$\mathrm{m}_{\mathrm{PQ}}=\frac{-10-8}{15--9}=-\frac{3}{4} \Rightarrow \mathrm{PQ}: \mathrm{y}-8=-\frac{3}{4}(\mathrm{x}--9)$	M1	1.1b
	$P Q: y=-\frac{3}{4} x+\frac{5}{4} . \text { So } x=3 \Rightarrow y=-\frac{3}{4}(3)+\frac{5}{4}=-1$ so PQ is the diameter of the circle.	A1	2.1
		(2)	
(a) Alt 2	$\mathrm{PQ}=\sqrt{(-9-15)^{2}+(8--10)^{2}}\{=\sqrt{900}=30\}$ and either - $\mathrm{AP}=\sqrt{(3--9)^{2}+(-1-8)^{2}}\{=\sqrt{225}=15\}$ - $\mathrm{AQ}=\sqrt{(3-15)^{2}+(-1--10)^{2}}\{=\sqrt{225}=15\}$	M1	1.1b
	e.g. as $\mathrm{PQ}=2 \mathrm{AP}$, then PQ is the diameter of the circle.	A1	2.1
		(2)	
(b)	Uses Pythagoras in a correct method to find either the radius or diameter of the circle.	M1	1.1b
	$(x-3)^{2}+(y+1)^{2}=225\left(\text { or }(15)^{2}\right)$	M1	1.1b
		A1	1.1b
		(3)	
(c)	Distance $=\sqrt{(" 15 ")^{2}-(10)^{2}} \quad$ or $=\frac{1}{2} \sqrt{(2(" 15 "))^{2}-(2(10))^{2}}$	M1	3.1a
	$\{=\sqrt{125}\}=5 \sqrt{5}$	A1	1.1b
		(2)	
(d)	$\sin (\mathrm{A} \hat{R} \mathrm{Q})=\frac{20}{2(" 15 ")}$ or $\mathrm{A} \hat{R} \mathrm{Q}=90-\cos ^{-1}\left(\frac{10}{415 "}\right)$	M1	3.1a
	$A \hat{R} \mathrm{Q}=41.8103 \ldots=41.8^{\circ}$ (to 0.1 of a degree)	A1	1.1b
		(2)	

Question 9 Notes:

(a)

M1: Uses a correct method to find the midpoint of the line segment PQ
A1: Completes proof by obtaining $(3,-1)$ and gives a correct conclusion.
(a)

Alt 1
M1: Full attempt to find the equation of the line PQ
A1: Completes proof by showing that $(3,-1)$ lies on PQ and gives a correct conclusion.
(a)

Alt 2
M1: Attempts to find distance PQ and either one of distance AP or distance AQ
A1: \quad Correctly shows either

- $\mathrm{PQ}=2 \mathrm{AP}$, supported by $\mathrm{PQ}=30, \mathrm{AP}=15$ and gives a correct conclusion
- $\mathrm{PQ}=2 \mathrm{AQ}$, supported by $\mathrm{PQ}=30, \mathrm{AQ}=15$ and gives a correct conclusion
(b)

M1:

Either

- uses Pythagoras correctly in order to find the radius. Must clearly be identified as the radius. E.g. $\mathrm{r}^{2}=(-9-3)^{2}+(8+1)^{2}$ or $\mathrm{r}=\sqrt{(-9-3)^{2}+(8+1)^{2}}$ or $\mathrm{r}^{2}=(15-3)^{2}+(-10+1)^{2}$ orr $=\sqrt{(15-3)^{2}+(-10+1)^{2}}$
or
- uses Pythagoras correctly in order to find the diameter. Must clearly be identified as the diameter. E.g. $\mathrm{d}^{2}=(15+9)^{2}+(-10-8)^{2}$ or $\mathrm{d}=\sqrt{(15+9)^{2}+(-10-8)^{2}}$
Note: This mark can be implied by just 30 clearly seen as the diameter or 15 clearly seen as the radius (may be seen or implied in their circle equation)
M1: Writes down a circle equation in the form $(x \pm " 3 ")^{2}+(y \pm "-1 ")^{2}=(\text { their } r)^{2}$
A1: $\quad(x-3)^{2}+(y+1)^{2}=225$ or $(x-3)^{2}+(y+1)^{2}=15^{2}$ or $x^{2}-6 x+y^{2}+2 y-215=0$
(c)

M1: Attempts to solve the problem by using the circle property "the perpendicular from the centre to a chord bisects the chord" and so applies Pythagoras to write down an expression of the form $\sqrt{\left(\text { their " } 155^{\prime \prime}\right)^{2}-(10)^{2}}$.
A1: $\quad 5 \sqrt{5}$ by correct solution only
(d)

M1: Attempts to solve the problem by e.g. using the circle property "the angle in a semi-circle is a right angle" and writes down either $\sin (A \hat{R} Q)=\frac{20}{2(\text { their "15") }}$ or $\mathrm{A} \hat{R} Q=90-\cos ^{-1}\left(\frac{10}{\text { their "15" }}\right)$
Note: Also allow $\cos (\mathrm{A} \hat{\mathrm{R}})=\frac{15^{2}+(2(5 \sqrt{5}))^{2}-15^{2}}{2(15)(2(5 \sqrt{5}))}\left\{=\frac{\sqrt{5}}{3}\right\}$
A1: $\quad 41.8$ by correct solution only

Question	Scheme	Marks	AOs
10 (a)	$x>\ln \left(\frac{4}{3}\right)$	B1	2.2a
		(1)	
(b)	Attempts to apply $\int \mathrm{y} \frac{\mathrm{dx}}{\mathrm{dt}} \mathrm{dt}$	M1	3.1a
	$\left\{\int \mathrm{y} \frac{\mathrm{dx}}{\mathrm{dt}} \mathrm{dt}=\right\}=\int\left(\frac{1}{\mathrm{t}+1}\right)\left(\frac{1}{\mathrm{t}+2}\right) \mathrm{dt}$	A1	1.1b
	$\frac{1}{(t+1)(\mathrm{t}+2)} \equiv \frac{\mathrm{A}}{(\mathrm{t}+1)}+\frac{\mathrm{B}}{(\mathrm{t}+2)} \Rightarrow 1 \equiv \mathrm{~A}(\mathrm{t}+2)+\mathrm{B}(\mathrm{t}+1)$	M1	3.1a
	$\{\mathrm{A}=1, \mathrm{~B}=-1 \Rightarrow\}$ gives $\frac{1}{(t+1)}-\frac{1}{(t+2)}$	A1	1.1b
	$\left.\iint\left(\frac{1}{(t+1)}-\frac{1}{(t+2)}\right) d t=\right\} \ln (t+1)-\ln (t+2$	M1	1.1b
	$\left.\int\left(\frac{1}{(t+1)} \frac{1}{(t+2)}\right) d t=\right\} \ln (t+1)-\ln (t+2)$	A1	1.1b
	$\operatorname{Area}(\mathrm{R})=[\ln (\mathrm{t}+1)-\ln (\mathrm{t}+2)]_{0}^{2}=(\ln 3-\ln 4)-(\ln 1-\ln 2)$	M1	2.2a
	$=\ln 3-\ln 4+\ln 2=\ln \left(\frac{(3)(2)}{4}\right)=\ln \left(\frac{6}{4}\right)$		
	$=\ln \left(\frac{3}{2}\right) *$	A1*	2.1
		(8)	
(b) Alt 1	Attempts to apply $\int y d x=\int \frac{1}{e^{x}-2+1} d x=\int \frac{1}{e^{x}-1} d x$, with a substitution of $u=e^{x}-1$	M1	3.1a
	$\left\{\int \mathrm{ydx}\right\}=\int\left(\frac{1}{u}\right)\left(\frac{1}{u+1}\right) \mathrm{du}$	A1	1.1b
	$\frac{1}{u(u+1)} \equiv \frac{\mathrm{A}}{\mathrm{u}}+\frac{\mathrm{B}}{(\mathrm{u}+1)} \Rightarrow 1 \equiv \mathrm{~A}(\mathrm{u}+1)+\mathrm{Bu}$	M1	3.1a
	$\{\mathrm{A}=1, \mathrm{~B}=-1 \Rightarrow\}$ gives $\frac{1}{\mathrm{u}}-\frac{1}{(\mathrm{u}+1)}$	A1	1.1b
	$\iint\left(\frac{1}{u}-\frac{1}{(u+1)}\right.$ du $\left.=\right\} \ln u-\ln (u+1)$	M1	1.1b
	$\left\{\int\left(\overline{\mathrm{u}}-\frac{1}{(\mathrm{u}+1)}\right) \mathrm{du}=\right\} \ln \mathrm{u}-\ln (\mathrm{u}+1)$	A1	1.1b
	$\operatorname{Area}(\mathrm{R})=[\ln u-\ln (\mathrm{u}+1)]_{1}^{3}=(\ln 3-\ln 4)-(\ln 1-\ln 2)$	M1	2.2a
	$=\ln 3-\ln 4+\ln 2=\ln \left(\frac{(3)(2)}{4}\right)=\ln \left(\frac{6}{4}\right)$		
	$=\ln \left(\frac{3}{2}\right)$ *	A1 *	2.1
		(8)	
(9 marks)			

Question	Scheme	Marks	AOs
$\begin{gathered} 10 \text { (b) } \\ \text { Alt } 2 \end{gathered}$	Attempts to apply $\int y d x=\int \frac{1}{e^{x}-2+1} d x=\int \frac{1}{e^{x}-1} d x$, with a substitution of $\mathrm{v}=\mathrm{e}^{\mathrm{x}}$	M1	3.1a
	$\left\{\int y d x\right\}=\int\left(\frac{1}{v-1}\right)\left(\frac{1}{v}\right) \mathrm{dv}$	A1	1.1b
	$\frac{1}{(\mathrm{v}-1) \mathrm{v}} \equiv \frac{\mathrm{A}}{(\mathrm{v}-1)}+\frac{\mathrm{B}}{\mathrm{v}} \Rightarrow 1 \equiv \mathrm{Av}+\mathrm{B}(\mathrm{v}-1)$	M1	3.1a
	$\{\mathrm{A}=1, \mathrm{~B}=-1 \Rightarrow\}$ gives $\frac{1}{(\mathrm{v}-1)}-\frac{1}{v}$	A1	1.1b
	$\left\{\int\left(\frac{1}{(v-1)}-\frac{1}{v}\right) \mathrm{dv}=\right\} \ln (\mathrm{v}-1)-\ln \mathrm{v}$	M1	1.1b
	$\left.\int\left(\begin{array}{ll}\frac{1}{(v-1)} & \mathrm{v}\end{array}\right) \mathrm{dv}=\right\}$	A1	1.1b
	$\operatorname{Area}(\mathrm{R})=[\ln (\mathrm{v}-1)-\ln \mathrm{v}]_{2}^{4}=(\ln 3-\ln 4)-(\ln 1-\ln 2)$	M1	2.2a
	$=\ln 3-\ln 4+\ln 2=\ln \left(\frac{(3)(2)}{4}\right)=\ln \left(\frac{6}{4}\right)$		
	$=\ln \left(\frac{3}{2}\right) *$	A1 *	2.1
		(8)	

Question 10 Notes:

(a)

B1: Uses $\mathrm{x}=\ln (\mathrm{t}+2)$ with $\mathrm{t}>-\frac{2}{3}$ to deduce the correct domain, $\mathrm{x}>\ln \left(\frac{4}{3}\right)$
(b)

M1:
Attempts to solve the problem by either

- a parametric process or
- a Cartesian process with a substitution of either $u=e^{x}-1$ or $v=e^{x}$

A1: Obtains

- $\int\left(\frac{1}{t+1}\right)\left(\frac{1}{t+2}\right) d t$ from a parametric approach
- $\int\left(\frac{1}{\mathrm{u}}\right)\left(\frac{1}{\mathrm{u}+1}\right) \mathrm{du}$ from a Cartesian approach with $\mathrm{u}=\mathrm{e}^{\mathrm{x}}-1$
- $\int\left(\frac{1}{v-1}\right)\left(\frac{1}{v}\right) d v$ from a Cartesian approach with $v=e^{x}$

M1: Applies a strategy of attempting to express either $\frac{1}{(t+1)(t+2)}, \frac{1}{u(u+1)}$ or $\frac{1}{(v-1) v}$ as partial fractions
A1: \quad Correct partial fractions for their method
M1: Integrates to give either

- $\pm \alpha \ln (\mathrm{t}+1) \pm \beta \ln (\mathrm{t}+2)$
- $\quad \pm \alpha \ln \mathrm{u} \pm \beta \ln (\mathrm{u}+1) ; \alpha, \beta \neq 0$, where $\mathrm{u}=\mathrm{e}^{\mathrm{x}}-1$
- $\pm \alpha \ln (\mathrm{v}-1) \pm \beta \ln \mathrm{v} ; \alpha, \beta \neq 0$, where $\mathrm{v}=\mathrm{e}^{\mathrm{x}}$

Correct integration for their method
M1: Either

- Parametric approach: Deduces and applies limits of 2 and 0 in t and subtracts the correct way round
- Cartesian approach: Deduces and applies limits of 3 and 1 in u, where $u=e^{x}-1$, and subtracts the correct way round
- Cartesian approach: Deduces and applies limits of 4 and 2 in v, where $v=e^{x}$, and subtracts the correct way round
$\mathbf{A 1 *}$: Correctly shows that the area of R is $\ln \left(\frac{3}{2}\right)$, with no errors seen in their working

11 Arithmetic sequence, $\mathrm{T}_{2}=2 \mathrm{k}, \mathrm{T}_{3}=5 \mathrm{k}-10, \mathrm{~T}_{4}=7 \mathrm{k}-14$

$(5 k-10)-(2 k)=(7 k-14)-(5 k-10) \Rightarrow k=\ldots$	M1	2.1
$\{3 k-10=2 k-4 \Rightarrow\} \quad k=6$	A1	$1.1 b$
$\{k=6 \Rightarrow\} T_{2}=12, T_{3}=20, T_{4}=28 . S o d=8, a=4$	M1	2.2 a
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}(2(4)+(\mathrm{n}-1)(8))$	M 1	1.1 b
$=\frac{\mathrm{n}}{2}(8+8 \mathrm{n}-8)=4 \mathrm{n}^{2}=(2 \mathrm{n})^{2}$ which is a square number	A1	2.1
	$\mathbf{(5)}$	

Question 11 Notes:

M1: Complete method to find the value of k
A1: Uses a correct method to find $\mathrm{k}=6$
M1: Uses their value of k to deduce the common difference and the first term ($\neq \mathrm{T}_{2}$) of the arithmetic series.

M1: Applies $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})$ with their $\mathrm{a} \neq \mathrm{T}_{2}$ and their d .
A1: Correctly shows that the sum of the series is $(2 \mathrm{n})^{2}$ and makes an appropriate conclusion.

Complete process to find at least one set of coordinates for P . The process must include evidence of - differentiating - setting $\frac{d y}{d x}=0$ to find $x=\ldots$ - substituting $x=\ldots$ into $\sin x+\cos y=0.5$ to find $y=\ldots$	M1	3.1a
$\left\{x x^{x} x\right\} \cos x-\sin y \frac{d y}{d x}=0$	B1	1.1b
Applies $\frac{d y}{d x}=0 \quad$ (e.g. $\cos x=0$ or $\left.\frac{\cos x}{\sin \mathrm{y}}=0 \Rightarrow \cos \mathrm{x}=0\right) \Rightarrow \mathrm{x}=\ldots$	M1	2.2a
giving at least one of either $\mathrm{x}=-\frac{\pi}{2}$ or $\mathrm{x}=\frac{\pi}{2}$	A1	1.1b
$\mathrm{x}=\frac{\pi}{2} \Rightarrow \sin \left(\frac{\pi}{2}\right)+\cos \mathrm{y}=0.5 \Rightarrow \cos \mathrm{y}=-\frac{1}{2} \Rightarrow \mathrm{y}=\frac{2 \pi}{3}$ or $-\frac{2 \pi}{3}$	M1	1.1b
So in specified range, $(\mathrm{x}, \mathrm{y})=\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$ and $\left(\frac{\pi}{2},-\frac{2 \pi}{3}\right)$, by cso	A1	1.1b
$x=-\frac{\pi}{2} \Rightarrow \sin \left(-\frac{\pi}{2}\right)+\cos y=0.5 \Rightarrow \cos y=1.5$ has no solutions, and so there are exactly 2 possible points P .	B1	2.1
	(7)	

Question 12 Notes:

M1: See scheme
B1: Correct differentiated equation. E.g. $\cos x-\sin y \frac{d y}{d x}=0$
M1: Uses the information "the tangent to C at the point P is parallel to the x -axis" to deduce and apply $\frac{d y}{d x}=0$ and finds $x=\ldots$
A1: \quad See scheme
M1: For substituting one of their values from $\frac{d y}{d x}=0$ into $\sin x+\cos y=0.5$ and so finds $x=\ldots, y=\ldots$
A1: Selects coordinates for P on C satisfying $\frac{\mathrm{dy}}{\mathrm{dx}}=0$ and $-\frac{\pi}{2}, \mathrm{x}<\frac{3 \pi}{2},-\pi<\mathrm{y}<\pi$ i.e. finds $\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$ and $\left(\frac{\pi}{2},-\frac{2 \pi}{3}\right)$ and no other points by correct solution only

B1: Complete argument to show that there are exactly 2 possible points P.

Questio	Scheme	Marks	AOs
13(a)	$\operatorname{cosec} 2 \mathrm{x}+\cot 2 \mathrm{x} \equiv \cot \mathrm{x}, \mathrm{x} \neq 90 \mathrm{n}^{\circ}, \mathrm{n} \in \square$		
	$\operatorname{cosec} 2 \mathrm{x}+\cot 2 \mathrm{x}=\frac{1}{\sin 2 \mathrm{x}}+\frac{\cos 2 \mathrm{x}}{\sin 2 \mathrm{x}}$	M1	1.2
	$=\frac{1+\cos 2 x}{\sin 2 x}$	M1	1.1b
	$1+2 \cos ^{2} x-1 \quad 2 \cos ^{2} x$	M1	2.1
	$2 \sin x \cos x \quad 2 \sin x \cos x$	A1	1.1b
	$=\frac{\cos x}{\sin x}=\cot x *$	A1*	2.1
		(5)	
(b)	$\operatorname{cosec}\left(4 \theta+10^{\circ}\right)+\cot \left(4 \theta+10^{\circ}\right)=\sqrt{3} ; ~ 0, ~ \theta<180^{\circ}$,		
	$\cot \left(2 \theta \pm \ldots{ }^{\circ}{ }^{\circ}\right)=\sqrt{3}$	M1	2.2a
	$2 \theta \pm=30^{\circ} \Rightarrow \theta=125^{\circ}$	M1	1.1b
		A1	1.1b
	$2 \theta+5^{\circ}=180^{\circ}+\mathrm{PV}^{\circ} \Rightarrow \theta=\ldots{ }^{\circ}$	M1	2.1
	$\theta=102.5^{\circ}$	A1	1.1b
		(5)	
(10 marks)			

Question 13 Notes:

(a)

M1: Writes $\operatorname{cosec} 2 \mathrm{x}=\frac{1}{\sin 2 \mathrm{x}}$ and $\cot 2 \mathrm{x}=\frac{\cos 2 \mathrm{x}}{\sin 2 \mathrm{x}}$
M1: Combines into a single fraction with a common denominator
M1: Applies $\sin 2 \mathrm{x}=2 \sin \mathrm{x} \cos \mathrm{x}$ to the denominator and applies either

- $\cos 2 x=2 \cos ^{2} x-1$
- $\cos 2 x=1-2 \sin ^{2} x$ and $\sin ^{2} x+\cos ^{2} x=1$
- $\cos 2 x=\cos ^{2} x-\sin ^{2} x$ and $\sin ^{2} x+\cos ^{2} x=1$
to the numerator and manipulates to give a one term numerator expression
A1: Correct algebra leading to $\frac{2 \cos ^{2} x}{2 \sin x \cos x}$ or equivalent.
A1*: Correct proof with correct notation and no errors seen in working
(b)

M1: Uses the result in part (a) in an attempt to deduce either $2 \mathrm{x}=4 \theta+10$ or $\mathrm{x}=2 \theta+\ldots$ and uses $\mathrm{x}=2 \theta+\ldots$ to write down or imply $\cot \left(2 \pm . . .^{\circ}\right)=\sqrt{3}$
M1: Applies $\operatorname{arccot}(\sqrt{3})=30^{\circ}$ or $\arctan \left(\frac{1}{\sqrt{3}}\right)=30^{\circ}$ and attempts to solve $2 \theta \pm \ldots=30^{\circ}$ to give $\theta=\ldots$
A1: \quad Uses a correct method to obtain $\theta=12.5^{\circ}$
M1:
Uses $2 \theta+5=180+$ their PV° in a complete method to find the second solution, $\theta=\ldots$
A1:
Uses a correct method to obtain $\theta=102.5^{\circ}$, with no extra solutions given either inside or outside the required range 0 , $\theta<180^{\circ}$

Questio	Scheme	Marks	AOs
14 (i)	For an explanation or statement to show when the claim $3^{x} \ldots 2^{\mathrm{x}}$ fails This could be e.g. - when $\mathrm{x}=-1, \frac{1}{3}<\frac{1}{2}$ or $\frac{1}{3}$ is not greater than or equal to $\frac{1}{2}$ - when $\mathrm{x}<0,3^{\mathrm{x}}<2^{\mathrm{x}}$ or 3^{x} is not greater than or equal to 2^{x}	M1	2.3
	followed by an explanation or statement to show when the claim $3^{x} \ldots 2^{x}$ is true. This could be e.g. - $x=2,9 \ldots 4$ or 9 is greater than or equal to 4 - when $\mathrm{x} \ldots 0,3^{\mathrm{x}} \ldots 2^{\mathrm{x}}$ and a correct conclusion. E.g. - so the claim $3^{x} \ldots 2^{x}$ is sometimes true	A1	2.4
		(2)	
(ii)	Assume that $\sqrt{3}$ is a rational number So $\sqrt{3}=\frac{\mathrm{p}}{\mathrm{q}}$, where p and q integers, $\mathrm{q} \neq 0$, and the HCF of p and q is 1	M1	2.1
	$\Rightarrow \mathrm{p}=\sqrt{3} \mathrm{q} \Rightarrow \mathrm{p}^{2}=3 \mathrm{q}^{2}$	M1	1.1b
	$\Rightarrow p^{2}$ is divisible by 3 and so p is divisible by 3	A1	2.2a
	So $p=3 \mathrm{c}$, where c is an integer From earlier, $p^{2}=3 q^{2} \Rightarrow(3 c)^{2}=3 q^{2}$	M1	2.1
	$\Rightarrow \mathrm{q}^{2}=3 \mathrm{c}^{2} \Rightarrow \mathrm{q}^{2}$ is divisible by 3 and so q is divisible by 3	A1	1.1b
	As both p and q are both divisible by 3 then the HCF of p and q is not 1 This contradiction implies that $\sqrt{3}$ is an irrational number	A1	2.4
		(6)	
(8 marks)			

Question 14 Notes:

(i)

M1: See scheme
A1: See scheme
(ii)

M1: Uses a method of proof by contradiction by initially assuming that $\sqrt{3}$ is rational and expresses
$\sqrt{3}$ in the form $\frac{\mathrm{p}}{\mathrm{q}}$, where p and q are correctly defined.
M1: Writes $\sqrt{3}=\frac{\mathrm{p}}{\mathrm{q}}$ and rearranges to make p^{2} the subject
A1: Uses a logical argument to prove that p is divisible by 3
M1: Uses the result that p is divisible by 3, (to construct the initial stage of proving that q is also divisible by 3), by substituting $\mathrm{p}=3 \mathrm{c}$ into their expression for p^{2}

A1: Hence uses a correct argument, in the same way as before, to deduce that q is also divisible by 3
A1: Completes the argument (as detailed on the scheme) that $\sqrt{3}$ is irrational.
Note: All the previous 5 marks need to be scored in order to obtain the final A mark.

