uestion	Scheme	Marks	AO
1(a)	Width = $0.4 \times 5 = 2$ (cm)	B1	3.1
	Area = 12 cm ² Frequency = 15 so 1 cm ² = $\frac{5}{4}$ packet o.e	M1	1.1
	Frequency of 9 corresponds to area of 7.2 Height = $7.2 \div 2 = 3.6$ (cm)	A1	1.1
		(3)	
(b)	$[Q_2 =] (248+) \frac{22}{35} \times 4$ or (use of (n+1)) (248+) $\frac{22.5}{35} \times 4$	M1	1.1
	= awrt 250.5 (g) or 250.6	A1	1.1
		(2)	
(c)	Mean = awrt 250.4 (g)	B1	1.1
	$\left[\sigma_{x}=\right]\sqrt{\frac{5644171.75}{90}-\left(\frac{22535.5}{90}\right)^{2}}=\sqrt{15.64}$	M1	1.1
	= awrt 4.0 (g)	A1	1.1
	Accept $\left(s_x = \sqrt{\frac{5644171.75 - 90\left(\frac{22535.5}{90}\right)^2}{89}} = 3.977 \right)$	(3)	
(d)	$H_0: \mu = 250$ $H_1: \mu > 250$	B1	2.:
	$\overline{X} \sim N\left(250, \frac{4^2}{90}\right) \text{ and } \overline{X} > 250.4$	M1	3.
	$P(\bar{X} > 250.4) = 0.171$	A1	3.4
	0.171 > 0.05 or $z = 0.9486 < 1.6449$	A1	1.1
	There is insufficient evidence that the mean weight of coffee is greater than 250 g, or there is no evidence to support the sellers claim.	A1	2.2
		(5)	
(e)	It is consistent as (the estimate of) the mean is close to (the estimate of) the median which is true for the normal distribution.	B1ft	3.5
		(1)	
		(14 n	nark

Notes:
(a) B1: for correct width
M1: for clear attempt to relate the area to frequency.
May be implied by their height \times their width = 7.2
A1: for height = 3.6 cm
(b) M1: for $\frac{22}{35} \times 4$ or $\frac{22.5}{35} \times 4$
A1: awrt 250.5 or 250.6
(c) B1: awrt 250.4
M1: for a correct expression for σ or \mathbf{s} , can ft their mean
A1: awrt 4.0 (allow $s = awrt 4.0$)
(d) B1: hypotheses stated correctly
M1: for selecting a correct model, (stated or implied)
A1: for use of the correct model to find $p = awrt 0.171$ (allow $z = awrt 0.948$)
A1: for a correct calculation, comparison and correct statement
A1: for a correct conclusion in context mentioning mean weight and 250
(e) B1: evaluating the validity of the model used in (d)

Question	Scheme	Marks	AOs
2(a)	Not suitable with a correct reason eg the points do not lie close to a straight line. there appear to be two populations if G and H were removed it appears to be a negative correlation	B1	1.2
		(1)	
(b)	$H_0: \rho = 0 H_1: \rho > 0$	B1	2.5
	Critical value 0.5509	M1	1.1a
	Reject H ₀		
	There is evidence that pmcc is greater than zero	A1	2.2b
		(3)	
(c)	Beijing and Jacksonville	B1	2.2a
		(1)	
(d)	Beijing and Jacksonville are the closest to the equator	B1	2.4
		(1)	
(e)	Use data from one place.	B1	2.4
		(1)	
		(7 n	narks
Notes:			
(a) B1: for	a correct statement using the data in the table		
(b) B1: for	both hypotheses in terms of ρ		
	selecting a suitable critical value compatible with their H ₁ a correct conclusion stated		
(c) B1: both	n Beijing and Jacksonville – they do not need to be attached to G and H	correctly.	
(d) B1: for	the idea they are near the equator dependent only Beijing or Jacksonvill	e being give	en in

part(c)

Question	Scheme	Marks	AOs		
3 (a)	[A = no. of bulbs that grow into plants with blue flowers,] A~B(40, 0.36)	M1	3.3		
	$p = P(A \ge 21) = 0.0240$	A1	1.1b		
	C = no. of bags with more than 20 bulbs that grow into blue flowers, $C \sim B(5, p)$	M1	3.3		
	So $P(C \le 1) = 0.9945$ awrt 0.995	A1	1.1b		
		(4)			
(b)	[T ~ number of bulbs that grow into blue flowers]T~ B(n, 0.36)				
	T can be approximated by N(0.36n, 0.2304n)	B1	3.4		
	$P\left(Z < \frac{244.5 - 0.36n}{\sqrt{0.2304n}}\right) = 0.9479$	M1	1.1b		
	$\frac{244.5 - 0.36n}{\sqrt{0.2304n}} = 1.625 \text{ or } \frac{244.5 - 0.36x^2}{0.48x} = 1.625$	M1 A1	3.4 1.1b		
	$0.36n + 0.78\sqrt{n} - 244.5 = 0$	M1	1.1b		
	n = 625	Alcso	1.1b		
		(6)			
		(10 n	narks)		
Notes:					
(a) M1: for	selecting an appropriate model for A				
A1: for	a correct value of the parameter p for C				
M1: for	selecting an appropriate model for C				
A1: for a	A1: for awrt 0.995				
	correct normal distribution				
M1: for	correct use of continuity correction equal to a z value where $ z > 1$				
M1: for	standardisation with their μ and σ				
	a correct equation				
	M1: using a correct method to solve their 3-term quadratic				
A1: 625	A1: 625 on its own cso				

Question	Scheme	Marks	AOs
4(a)	$P(S \cap D') = 0$	B1	1.1b
		(1)	
(b)	$P(C S \cap D) = \frac{0.27}{0.6} = \frac{9}{20} = 0.45$	M1	3.1b
	∴ 80×"0.45"	M1	1.1b
	=36	A1	1.1b
		(3)	
(c)	$[P(C) \times P(S) = P(C \cap S)]$		
	$P(S) = 0.6, P(C) = 0.27 + v + u, P(S \cap C) = 0.27$	M1	3.1a
	$0.6 \times (0.27 + u + v) = 0.27$ or $u + v = 0.18$ o.e	A1	1.1b
	$\left[P(D C) = \frac{P(D \cap C)}{P(C)}\right] P(D \cap C) = 0.27 + v$	M1	3.1a
	$\frac{14}{15} = \frac{0.27 + v}{0.27 + v + u}$ or $14u - v = 0.27$ o.e	A1	1.1b
	15u = 0.45	M1dd	1.1b
	u = 0.03 $v = 0.15$	A1	1.1b
	w = 0.22	Alft	1.1b
		(7)	
		(11 n	narks)
Notes:			
(a) B1: con	rrect answer only		
(b) M1: for 80	a correct ratio of probabilities formula with at least one correct value an	d multiply	ing by
	correct answer		
	r translating the problem and realising the equation $P(C) \times P(S) = P(C \cap C)$	S) needs	to be
	h at least 2 parts correct.		
	rrect equation		
	a correct probability formula with $P(D \cap C) = 0.27 + v$		
	cond correct equation	uo aimulta	2000
	lependent on the previous 2 method marks being awarded. Solving the tw s by eliminating one variable. May be implied by either u or v correct	wo simulta	neous
A1: u co			
A1: v co			
A1ft: w	= 0.22, ft their u, v provided that $u + v + w < 0.4$		

Question	Scheme	Marks	AOs
5(a)	$P(L_{X} > 160) = P\left(Z > \frac{160 - 150}{25}\right)$		
	= P(Z > 0.4)		
	=1-0.6554		
	= awrt 0.345 0.34457	B1	1.1b
	Expected number = $12 \times "0.345"$	M1	1.1b
	= 4.13 (allow 4.14)	A1	1.1b
		(3)	
(b)	$P(L_{\rm Y} < 180) = 0.841621$	B1	3.4
	$\frac{180-160}{\sigma} = 0.8416$	M1	1.1b
	$\sigma = $ awrt 23.8	A1	1.1b
		(3)	
(c)	The standard deviations for two companies are close but the mean for company Y is higher	M1	2.4
	therefore choose company Y	A1	2.2b
		(2)	
		(8 n	narks)
Notes:			
	rt 0.345 multiplying their probability by 12 3 (allow 4.14)		
	use of the correct model to find the correct value of z awrt 0.842 standardising = to a Z value $0.5 < Z < 1$ rt 23.8		
	a correct reason following their part(b) making an inference that follows their part(b)		

9MA0/03 Mock Paper: Part B Mechanics Mark scheme

Question	Scheme	Marks	AOs	
6	r = (-4.5i + 3j)	B1	1.1b	
	Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$	M1	3.1b	
	$(-4.5i + 3j) = 3u + 0.5(i - 2j) 3^2$	A1 ft	1.1b	
	$\mathbf{u} = (-3\mathbf{i} + 4\mathbf{j})$	A1	1.1b	
		(4)		
	·	(4 marks		
Notes:				
	displacement vector	• • • •		

M1: Use of correct strategy and/or formula to give equation in **u** only (could be obtained by two integrations)

A1ft: Correct equation in u only, following their displacement vector

A1: Correct answer

Question	Scheme	Marks	AOs
7	Differentiate wrt t	M1	1.1a
	a = (2t - 3) i - 12 j	A1	1.1b
	$(2t-3)^2 + (-12)^2$	M1	1.1b
	$(2t-3)^2 + (-12)^2 = (6.5 / 0.5)^2$ oe	M1	2.1
	$4t^2 - 12t - 16 = 0$	A1	1.1b
	(t-4)(t+1) = 0	M1	1.1b
	t = 4	A1	1.1b
		(7)	
	·	(7 n	narks)

Notes:

M1: At least one power going down

A1: A correct expression

M1: Sum of squares of components (with or without square root) of ${\bf a}$ or ${\bf F}$

M1: Equating magnitude to 6.5/0.5 or 6.5 as appropriate and squaring both sides

A1: Correct quadratic = 0 in any form

M1: Attempt to solve a 3 term quadratic

A1: 4

Question	Scheme	Marks	AOs
8 (a)	Resolve perp to the plane	M1	3.1b
	$R + 25 \sin 30^\circ = 3g\cos 20^\circ$	A1	1.1b
	Equation of motion up the plane	M1	3.1b
	$25 \cos 30^{\circ} - 3g \sin 20^{\circ} - F = 3a$	A1	1.1b
	F = 0.3R	B1	1.2
	Correct strategy: sub for F and solve for a	M1	3.1b
	$a = 2.4 \text{ or } 2.35 \text{ (m s}^{-2})$	A1	2.2a
		(7)	
(b)	e.g. Include air resistance	B1	3.5c
		(1)	
(c)	$R = 3gcos20^\circ$ so $Fmax = 0.9 gcos20^\circ$	B1	3.1b
	Consider 3gsin20° – 0.9gcos20°	M1	2.1
	Since > 0 , box moves down plane. *	A1*	2.2a
		(3)	
		(11 n	narks)
Notes:			
A1: g does M1: Using	an appropriate strategy to set up first of two equations, with usual rules a not need to be substituted an appropriate strategy to set up second of two equations, with usual rule g nor F need to be substituted (-1 each error)		1
B1: F = 0.3		ì	
A1: Only p	ossible answers, since $g = 9.8$ used.		

(b)

B1: e.g. include air resistance, allow for the weight of the rope

(c)

B1: Correct overall strategy (First equation could be implied)

M1: Must be difference or a comparison of the two values

A1*: Given answer

Scheme	Marks	AOs
Moments about A (or any other complete method)	M1	3.3
$T\cos 30^{\circ} x (1\sin 30^{\circ}) = 20g x 1.5$	A1	1.1.ł
$T\cos 30^{\circ} x (1\sin 30^{\circ}) = 20g x 1.5$	A1	1.1.1
T = 679 or 680 (N)	A1	1.1.t
	(4)	
Resolve horizontally	M1	3.1b
$X = T \cos 60^{\circ}$	A1	1.1t
Resolve vertically	M1	3.1t
$Y = T \cos 30^{\circ} - 20g$	A1	1.11
Use of $\tan = \frac{Y}{X}$ and sub for T	M1	3.4
49° (or better), below horizontal, away from wall	A1	2.2a
	(6)	
Tension would increase as you move from D to C	B1	3.5
Since each point of the rope has to support the length of rope below it	B1	2.4
	(2)	
Take moments about G, $1.5Y = 0$	M1	3.3
Y = 0 hence force acts horizontally.*	A1*	2.2a
	(2)	
	(14 n	narks
ct overall strategy e.g. M(A), with usual rules, to give equation in T only one error) Condone 1 error two or more errors) 679 or 680 (since g = 9.8 used) an appropriate strategy to set up first of two equations, with usual rules a	pplying	
)	Moments about A (or any other complete method) T $\cos 30^{\circ} x (1\sin 30^{\circ}) = 20g x 1.5$ T $\cos 30^{\circ} x (1\sin 30^{\circ}) = 20g x 1.5$ T $= 679 \text{ or } 680 (\text{N})$ Resolve horizontally X $= \text{T} \cos 60^{\circ}$ Resolve vertically Y $= \text{T} \cos 30^{\circ} - 20g$ Use of $\tan = \frac{Y}{X}$ and sub for T 49° (or better), below horizontal, away from wall Tension would increase as you move from D to C Since each point of the rope has to support the length of rope below it Take moments about G, $1.5\text{Y}=0$ Y $= 0$ hence force acts horizontally.* t overall strategy e.g. M(A), with usual rules, to give equation in T only one error) Condone 1 error two or more errors) 679 or 680 (since g = 9.8 used)	Moments about A (or any other complete method)M1T cos30° x (1sin30°) = 20g x 1.5A1T cos30° x (1sin30°) = 20g x 1.5A1T = 679 or 680 (N)A1(4)(4)Resolve horizontallyM1X = T cos60°A1Resolve verticallyM1Y = T cos30° - 20gA1Use of tan $= \frac{Y}{X}$ and sub for TM149° (or better), below horizontal, away from wallA1Generation(6)Tension would increase as you move from D to CB1Since each point of the rope has to support the length of rope below itB1Y = 0 hence force acts horizontally.*A1*(2)(14 moments about G, 1.5Y = 0t overall strategy e.g. M(A), with usual rules, to give equation in T only one error) Condone 1 errortwo or more errors)679 or 680 (since g = 9.8 used)

A1: Correct equation in Yonly

M1: Using the model and their X and Y

A1: 49 or better (since g cancels) Need all three bits of answer to score this mark or any other appropriate angle e.g 41° to wall, downwards and away from wall

(c)

B1: Appropriate equivalent comment

B1: Appropriate equivalent reason

(**d**)

M1: Using the model and any other complete method e.g. the three force condition for equilibrium A1*: Correct conclusion GIVEN ANSWER

Question	Scheme	Marks	AOs
10(a)	Using the model and horizontal motion: $s = ut$	M1	3.3
	$12 = T \times 45 \cos 10^{\circ}$	A1	1.1b
	T = 0.2707	A1	1.1b
	Using the model and vertical motion: $s = ut + \frac{1}{2}at^2$	M1	3.4
	$s = 45Tsin10^{\circ} + 4.9T^{2}$	A1	1.1b
	Correct strategy: sub for T and find s	M1	3.1b
	d = 3.5 - 2.4752 - 1	M1	3.1b
	= 2.5 (cm) (2 SF)	A1	2.2a
		(8)	
(b)	Using the model and vertical motion: $v = u + at$	M1	3.3
	$v = 45 \sin 10^{\circ} + 9.8 T$	A1	1.1b
	Speed = $((45\cos 10^{\circ})^2 + v^2)^{0.5}$	M1	3.1b
	46 (m s ⁻¹) (2 SF)	A1	1.1b
		(4)	
(c)	Model does not take account of air resistance.	B1	3.5b
	Model does not take account of the size of the tennis ball	B1	3.5b
		(2)	
		(14 n	narks)
Notes:			
A1: Correc A1: 0.271 (M1: Using A1: Correc M1: Sub fo M1: Correc A1: 2.5 is th (b)	the model and correct strategy		
A1: Correct	equation		
M1: Must h	ave found a v and usual rules apply. Square root is needed.		

A1: 46 (2 SF) is only correct answer

(c)

B1: Other appropriate answer e.g. spin of the ball, wind effect

B1: Other appropriate answer e.g. spin of the ball, wind effect